首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.  相似文献   

2.
SCF (Skp1-cullin/Cdc53-F-box protein) ubiquitin ligases bind substrates via the variable F-box protein and, in conjunction with the RING domain protein Rbx1 and the ubiquitin-conjugating enzyme Ubc3/Cdc34, catalyze substrate ubiquitination. The cullin subunit can be modified covalently by conjugation of the ubiquitin-like protein Rub1/NEDD8 (neddylation) or bound noncovalently by the protein CAND1 (cullin-associated, neddylation-dissociated). Expression of the Candida albicans CAND1 gene homolog CaTIP120 in Saccharomyces cerevisiae is toxic only in the presence of CaCdc53, consistent with a specific interaction between CaTip120 and CaCdc53. To genetically analyze this system in C. albicans, we deleted the homologs of RUB1/NEDD8, TIP120/CAND1, and the deneddylase gene JAB1, and we also generated a temperature-sensitive allele of the essential CaCDC53 gene by knock-in site-directed mutagenesis. Deletion of CaRUB1 and CaTIP120 caused morphological, growth, and protein degradation phenotypes consistent with a reduction in SCF ubiquitin ligase activity. Furthermore, the double Carub1(-/-) Catip120(-/-) mutant was more defective in SCF activity than either individual deletion mutant. These results indicate that CAND1 stimulates SCF ubiquitin ligase activity and that it does so independently of neddylation. Our data do not support a role for CAND1 in the protection of either the F-box protein or cullin from degradation but are consistent with the suggested role of CAND1 in SCF complex remodeling.  相似文献   

3.
Cullin-based E3 ligases are a large family of ubiquitin ligases with diverse cellular functions. They are composed of one of six mammalian cullin homologues, the Ring finger containing protein Roc1/Rbx1 and cullin homologue-specific adapter and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. To characterize this family of E3 ligases in intact cells, we generated a cell line with tetracycline-inducible expression of a dominant-negative mutant of the Nedd8-conjugating enzyme Ubc12, a reported inhibitor of cullin neddylation. Using this cell line, we demonstrate that the substrate recognition subunit Skp2 and the adaptor protein Skp1 are subject to Ubc12-dependent autoubiquitination and degradation. In contrast, cullin protein stability is not regulated by neddylation in mammalian cells. We also provide evidence that Cul1 and Cul3, as well as their associated substrate recognition subunits Skp2 and Keap1, respectively, homooligomerize in intact cells, suggesting that cullin-based ligases are dimeric. Cul3, but not Cul1 homooligomerization is dependent on substrate recognition subunit dimer formation. As shown for other E3 ubiquitin ligases, dimerization may play a role in regulating the activity of cullin-based E3 ligases.  相似文献   

4.
The SCF complex, which consists of the invariable components Skp1, Cul1, and Rbx1 as well as a variable F-box protein, functions as an E3 ubiquitin ligase. The mechanism by which the activity of this complex is regulated, however, has been unclear. The application of tandem affinity purification has now resulted in the identification of a novel Cul1-binding protein: TATA-binding protein-interacting protein 120A (TIP120A, also called CAND1). Immunoprecipitation, immunoblot, and immunofluorescence analyses with mammalian cells revealed that TIP120A physically associates with Cul1 in the nucleus and that this interaction is mediated by a central region of Cul1 distinct from its binding sites for Skp1 and Rbx1. Furthermore, TIP120A was shown to interact selectively with Cul1 that is not modified by NEDD8. The Cul1-TIP120A complex does not include Skp1, raising the possibility that TIP120A competes with Skp1 for binding to Cul1. These observations thus suggest that TIP120A may function as a negative regulator of the SCF complex by binding to nonneddylated Cul1 and thereby preventing assembly of this ubiquitin ligase.  相似文献   

5.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

6.
7.
SCF ubiquitin ligases contain an E3 core composed of Skp1, Cul1, a member of the Rbx1/Roc1 family of RING finger proteins, and a modular F box protein that functions in substrate targeting. Work published in this issue of Developmental Cell indicates that distinct Rbx1/Roc1 family members are used to control ubiquitination of distinct targets, suggesting that the RING finger subunit may contribute to ubiquitination specificity.  相似文献   

8.
The SCF E3 ubiquitin ligases select specific proteins for ubiquitination (and typically destruction) by coupling variable adaptor (F box) proteins that bind protein substrates to a conserved catalytic engine containing a cullin, Cul1, and the Rbx1/Roc1 RING finger protein. A new crystal structure of the SCF(Skp2) ubiquitin ligase shows the molecular organization of this complex and raises important questions as to how substrate ubiquitination is accomplished.  相似文献   

9.
Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.  相似文献   

10.
Substrate-mediated regulation of cullin neddylation   总被引:1,自引:0,他引:1  
  相似文献   

11.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

12.
Cullin‐based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin‐like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mammalian Cand1. Similar to Cand1, Lag2 directly interacts with non‐neddylated yeast cullin Cdc53 and prevents its neddylation in vivo and in vitro. Binding occurs through a conserved C‐terminal β‐hairpin structure that inserts into the Skp1‐binding pocket on the cullin, and an N‐terminal motif that covers the neddylation lysine. Interestingly, Lag2 is itself neddylated in vivo on a lysine adjacent to this N‐terminal‐binding site. Overexpression of Lag2 inhibits Cdc53 activity in strains defective for Skp1 or neddylation functions, implying that these activities are important to counteract Lag2 in vivo. Our results favour a model in which binding of substrate‐specific adaptors triggers release of Cand1/Lag2, whereas subsequent neddylation of the cullin facilitates the removal and prevents re‐association of Lag2/Cand1.  相似文献   

13.
While neddylation is known to activate cullin (CUL)-RING ubiquitin ligases (CRLs), its role in regulating T cell signaling is poorly understood. Using the investigational NEDD8 activating enzyme (NAE) inhibitor, MLN4924, we found that neddylation negatively regulates T cell receptor (TCR) signaling, as its inhibition increases IL-2 production, T cell proliferation and Treg development in vitro. We also discovered that loss of CUL neddylation occurs upon TCR signaling, and CRLs negatively regulate IL-2 production. Additionally, we found that tyrosine kinase signaling leads to CUL deneddylation in multiple cell types. These studies indicate that CUL neddylation is a global regulatory mechanism for tyrosine kinase signaling.  相似文献   

14.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

15.
In ubiquitination, cullin-RING E3 ubiquitin ligases (CRLs) assist in ubiquitin transfer from ubiquitin-conjugating enzyme E2 to the substrate. Neddylation, which involves NEDD8 transfer from E2 to E3-cullin, stimulates ubiquitination by inducing conformational change in CRLs. However, deneddylation, which removes NEDD8 from cullin, does not suppress ubiquitination in vivo, raising the question of how neddylation/deneddylation exerts its effects. Using molecular-dynamics simulations, we demonstrate that before neddylation occurs, the linker flexibility of Rbx1, a CRL component, leads to conformational changes in CRLs that allow neddylation and initiation of ubiquitination. These large NEDD8-induced conformational changes are retained after deneddylation, allowing both initiation of the ubiquitination process and ubiquitin chain elongation after deneddylation. Furthermore, mutation of lysine, the cullin residue to which NEDD8 covalently attaches, dramatically reduces CRL conformational changes, suggesting that the acceptor lysine allosterically regulates CRLs. Thus, our results imply that neddylation stimulates ubiquitination by CRL conformational control via lysine modification.  相似文献   

16.
Moon J  Zhao Y  Dai X  Zhang W  Gray WM  Huq E  Estelle M 《Plant physiology》2007,143(2):684-696
Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.  相似文献   

17.
Skp1-Cdc53/Cul1-F-box (SCF) complexes constitute a class of E3 ubiquitin ligases. Recently, a multiprotein complex containing pVHL, elongin C and Cul2 (VEC) was shown to structurally and functionally resemble SCF complexes. Cdc53 and the Cullins can become covalently linked to the ubiquitin-like molecule Rub1/NEDD8. Inhibition of neddylation inhibits SCF function in vitro and in yeast and plants. Here we show that ongoing neddylation is likewise required for VEC function in vitro and for the degradation of SCF and VEC targets in mammalian cells. Thus, neddylation regulates the activity of two specific subclasses of mammalian ubiquitin ligases.  相似文献   

18.
Ubiquitin E3 ligases are a diverse family of protein complexes that mediate the ubiquitination and subsequent proteolytic turnover of proteins in a highly specific manner. Among the several classes of ubiquitin E3 ligases, the Skp1-Cullin-F-box (SCF) class is generally comprised of three 'core' subunits: Skp1 and Cullin, plus at least one F-box protein (FBP) subunit that imparts specificity for the ubiquitination of selected target proteins. Recent genetic and biochemical evidence in Arabidopsis thaliana suggests that post-translational turnover of proteins mediated by SCF complexes is important for the regulation of diverse developmental and environmental response pathways. In this report, we extend upon a previous annotation of the Arabidopsis Skp1-like (ASK) and FBP gene families to include the Cullin family of proteins. Analysis of the protein interaction profiles involving the products of all three gene families suggests a functional distinction between ASK proteins in that selected members of the protein family interact generally while others interact more specifically with members of the F-box protein family. Analysis of the interaction of Cullins with FBPs indicates that CUL1 and CUL2, but not CUL3A, persist as components of selected SCF complexes, suggesting some degree of functional specialization for these proteins. Yeast two-hybrid analyses also revealed binary protein interactions between selected members of the FBP family in Arabidopsis. These and related results are discussed in terms of their implications for subunit composition, stoichiometry and functional diversity of SCF complexes in Arabidopsis.  相似文献   

19.
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.  相似文献   

20.
The heterodimeric Elongin BC complex has been shown to interact in vitro and in mammalian cells with a conserved BC-box motif found in a growing number of proteins including RNA polymerase II elongation factor Elongin A, SOCS-box proteins, and the von Hippel-Lindau (VHL) tumor suppressor protein. Recently, the VHL-Elongin BC complex was found to interact with a module composed of Cullin family member Cul2 and RING-H2 finger protein Rbx1 to reconstitute a novel E3 ubiquitin ligase that activates ubiquitylation by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. In the context of the VHL ubiquitin ligase, Elongin BC functions as an adaptor that links the VHL protein to the Cul2/Rbx1 module, raising the possibility that the Elongin BC complex could function as an integral component of a larger family of E3 ubiquitin ligases by linking alternative BC-box proteins to Cullin/Rbx1 modules. In this report, we describe identification and purification from rat liver of a novel leucine-rich repeat-containing BC-box protein, MUF1, which we demonstrate is capable of assembling with a Cullin/Rbx1 module containing the Cullin family member Cul5 to reconstitute ubiquitin ligase activity. In addition, we show that the additional BC-box proteins Elongin A, SOCS1, and WSB1 are also capable of assembling with the Cul5/Rbx1 module to reconstitute potential ubiquitin ligases. Taken together, our findings identify MUF1 as a new member of the BC-box family of proteins, and they predict the existence of a larger family of Elongin BC-based E3 ubiquitin ligases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号