首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and14CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.  相似文献   

2.
Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml−1) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H2S production by SRB. Journal of Industrial Microbiology & Biotechnology (2002) 29, 83–92 doi:10.1038/sj.jim.7000274 Received 20 February 2002/ Accepted in revised form 14 May 2002  相似文献   

3.
An indirect fluorescent antibody (FA) staining technique was developed for the rapid detection of Thiobacillus ferrooxidans. The specificity of the FA stain for T. ferrooxidans was demonstrated with both laboratory and environmental samples. Coal refuse examined by scanning electron microscopy exhibited a rough, porous surface, which was characteristically covered by water-soluble crystals. Significant numbers of T. ferrooxidans were detected in the refuse pores. A positive correlation between numbers of T. ferrooxidans and acid production in coal refuse in the laboratory was demonstrated with the FA technique.  相似文献   

4.
The effects of polychlorinated biphenyl (PCB) and phenanthrene stress on glucose uptake by natural microbial populations were examined by the heterotrophic potential technique. Temporal and spatial distributions in glucose uptake velocities were examined for natural samples as well as PCB- and phenanthrene-stressed samples. Statistical analysis indicated significant variability among the various samples. It was demonstrated that the environmental variables contributed significantly to the variability in uptake kinetics. Although general trends indicated a PCB-induced stimulation in uptake velocities, these trends were in part masked by sample variability. Data analysis indicated no statistically significant PCB or phenanthrene effect on either total glucose uptake velocities or the proportion of 14CO2 evolved, as compared to natural unstressed samples.  相似文献   

5.
The effects of polychlorinated biphenyl (PCB) and phenanthrene stress on glucose uptake by natural microbial populations were examined by the heterotrophic potential technique. Temporal and spatial distributions in glucose uptake velocities were examined for natural samples as well as PCB- and phenanthrene-stressed samples. Statistical analysis indicated significant variability among the various samples. It was demonstrated that the environmental variables contributed significantly to the variability in uptake kinetics. Although general trends indicated a PCB-induced stimulation in uptake velocities, these trends were in part masked by sample variability. Data analysis indicated no statistically significant PCB or phenanthrene effect on either total glucose uptake velocities or the proportion of 14CO2 evolved, as compared to natural unstressed samples.  相似文献   

6.
An indirect fluorescent antibody (FA) staining technique was developed for the rapid detection of Thiobacillus ferrooxidans. The specificity of the FA stain for T. ferrooxidans was demonstrated with both laboratory and environmental samples. Coal refuse examined by scanning electron microscopy exhibited a rough, porous surface, which was characteristically covered by water-soluble crystals. Significant numbers of T. ferrooxidans were detected in the refuse pores. A positive correlation between numbers of T. ferrooxidans and acid production in coal refuse in the laboratory was demonstrated with the FA technique.  相似文献   

7.
We have examined whether assimilation of CO2 can be used as a measure of metabolic activity in planktonic and sessile heterotrophic bacteria. CO2 assimilation by environmental samples and pure cultures of heterotrophic bacteria was studied using 14CO2 and 13CO2 as tracers. Heterotrophic growth on complex organic substrates resulted in assimilation of CO2 into cell biomass by activated sludge, drinking water biofilm, and pure cultures of Escherichia coli ATCC 25922, Es. coli ATCC 13706, Rhodococcus ruber, Burkholderia sp., Bacillus circulans, Pseudomonas putida, Pseudomonas stutzeri, and Pseudomonas aeruginosa. Analysis of 13C-labelled phospholipid fatty acids (PLFAs) confirmed that heterotrophic bacteria may assimilate 13CO2 into cell macromolecules such as membrane lipids. All major PLFAs extracted from activated sludge and drinking water biofilm samples were enriched in 13C after incubation with CO2. Between 1.4% and 6.5% of the biomass produced by cultures of P. putida and a drinking water biofilm during growth in complex media was apparently derived from assimilation of CO2. Resting cells assimilated less CO2 compared to actively growing cells, and CO2 assimilation activity correlated with the amount of biomass produced during heterotrophic growth. The 14CO2 assimilation assay was evaluated as a tool to examine inhibitory effects of biocides on planktonic and sessile heterotrophs (biofilms). On the basis of 14CO2 assimilation activity, the minimum inhibitory concentration (MIC) of benzalkonium chloride was estimated to 21.1 and 127.2 mg l(-1) for planktonic and biofilm samples, respectively. The results indicate that assimilation of isotopically labelled CO2 can be used as a relatively simple measure of metabolic activity in heterotrophic bacteria. CO2 assimilation assays may be used to study the effects of antimicrobial agents on growth and survival of planktonic and sessile heterotrophic organisms.  相似文献   

8.
Transition of chemolithotrophic Ferrobacillus ferrooxidans to organotrophy occurred after 60 hr of incubation in an organic medium. Three distinct phases, based on metabolic activities of cells, were observed during the course of transition. Conversion of cellular nutrition to organotrophy resulted in a gradual loss of Fe(2+) oxidation and cessation of CO(2) fixation. These changes were concomitant with a rapid increase in uptake of glucose and phosphate during the latter part of transition period. The outcome of transition was governed by the pH of the medium, temperature of incubation, availability of oxygen, age of the chemolithotrophic cells, and the type of energy and carbon source available to the bacterium. Presence or absence of p-aminobenzoic acid and Fe(2+) ions did not influence transition of cells. A defined medium containing glucose, mineral salts, and p-aminobenzoic acid at pH 2.5 was found to be most suitable for transition and for culture of heterotrophic convertants. Maximum growth rate of the heterotrophic cells was attained with vigorous aeration at 35 C. The bacterium could be cultured on a variety of organic compounds, including complex organic media, provided they were used in low concentrations. Serological studies on autotrophic cells and the heterotrophic convertant have shown a definite antigenic relationship between the two cell types.  相似文献   

9.
The contribution of CO2 to cell material synthesis in Thiobacillus novellus under nutrient-limited conditions was estimated by comparing 14CO2 uptake rates of steady-state autotrophic cultures with that of heterotrophic and mixotrophic cultures at a given dilution rate. Under heterotrophic conditions, some 13% of the cell carbon was derived from CO2; this is similar to the usual anaplerotic CO2 fixation in batch cultures of heterotrophic bacteria. Under mixotrophic conditions, the contribution of CO2 to cell material synthesis increased with increasing S2O3 2- -to-glucose ratio in the medium inflow; at a ratio of 10, ca. 32% of the cell carbon was synthesized from CO2. We speculate that the use of CO2 as carbon source, even when the glucose provided is sufficient to fulfill the biosynthetic needs, may augment the growth rate of the bacterium under such nutrient-limited conditions and could therefore be of survival value in nature. Some of the CO2 assimilated was excreted into the medium as organic compounds under all growth conditions, but in large amounts only in autotrophic environments as very low dilution rates.  相似文献   

10.
Most heterotrophic bacteria assimilate CO(2) in various carboxylation reactions during biosynthesis. In this study, assimilation of (14)CO(2) by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient (14)CO(2) during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of (14)C-labeled organic substrates. Experiments with E. coli showed that (14)CO(2) was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO(2)-MAR, was evaluated by targeting metabolic active filamentous bacteria, including "Candidatus Microthrix parvicella" in activated sludge. "Ca. Microthrix parvicella" was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [(14)C]oleic acid. However, the new HetCO(2)-MAR approach indicated that "Ca. Microthrix parvicella," did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO(2)(-), whereas the addition of O(2) or NO(3)(-) initiated growth, as indicated by detectable (14)CO(2) assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO(2)-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO(2)-MAR results were supported by stable isotope analysis of (13)C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of (13)CO(2). In conclusion, the novel HetCO(2)-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

11.
Cell suspensions of Thiovulum sp., collected from enrichment cultures, were grown, maintained, and harvested for periods up to 7 months. In open-flow cultures run with aerated seawater, a continuous supply of hydrogen sulfide was provided by diffusion through a semipermeable membrane from either a live culture of Desulfovibrio esturaii, neutralized sodium sulfide, or a N2-H2S gas mixture. Attempts to grow Thiovulum in pure culture failed despite variation in concentrations of dissolved oxygen and hydrogen sulfide in stratified as well as in completely mixed systems. Uptake of 14CO2 and some organic compounds by purified cell suspensions was measured, and values were corrected for the activity of heterotrophic as well as autotrophic contaminants as determined in control experiments. Cell populations exhibited maximum uptake activities during formation of the characteristic veils. Substantial uptake of CO2 in air-saturated seawater was coincident with an optimal concentration of hydrogen sulfide of about 1 mM. Glutamate and a selection of vitamins (B12M biotin, and thiamine) did not significantly affect the uptake of CO2. No substantial uptake of carbon from acetate, glutamate, mannitol, and Casamino Acids was found. Within the range of error indicated, the data are consistent with acceptance of a chemolithotrophic nature of Thiovulum.  相似文献   

12.
Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the "natural attenuation" of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon.  相似文献   

13.
The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C]bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying bacterial cells to heterotrophic bacteria was monitored with time by using MAR-FISH. The MAR-FISH analysis revealed that most phylogenetic groups of heterotrophic bacteria except the beta-Proteobacteria showed significant uptake of 14C-labeled microbial products. In particular, the members of the Chloroflexi were strongly MAR positive in the culture without NH4+ addition, in which nitrifying bacteria tended to decay. This indicated that the members of the Chloroflexi preferentially utilized microbial products derived from mainly biomass decay. On the other hand, the members of the Cytophaga-Flavobacterium cluster gradually utilized 14C-labeled products in the culture with NH4+ addition in which nitrifying bacteria grew. This result suggested that these bacteria preferentially utilized substrate utilization-associated products of nitrifying bacteria and/or secondary metabolites of 14C-labeled structural cell components. Our results clearly demonstrated that the coexisting heterotrophic bacteria efficiently degraded and utilized dead biomass and metabolites of nitrifying bacteria, which consequently prevented accumulation of organic waste products in the biofilm.  相似文献   

14.
    
Summary The seasonal variation in densities of heterotrophic flagellates and ciliates was examined for one year in the shallow hypertrophic Lake Søbygård, Denmark.Several peaks in numbers of bacteria, heterotrophic flagellates and ciliates were seen in spring and late autumn. The peak of heterotrophic flagellates occurred 3–9 days after the peak in bacteria. Ciliates peaked 3–6 days later than the heterotrophic flagellates. This pattern was not found in summer and autumn, probably due to predation and grazing influences by the macro-zooplankton.For enumeration of the heterotrophic flagellates a modification of the proflavine staining technique of Haas (1982) was used.Ciliates were counted on the < 20 µ and < 10 µm Lugol-fixed samples after live filtration on monofile nylon nets. During the investigation, however, it was shown that some ciliates were damaged by filtration.To investigate whether the filtration had any significant effect on total numbers, a series of filtration experiments was performed (Fig. 1).In this experiment, the live filtration showed a 30-fold underestimation. Several tests during the season confirmed this error tendency.In my opinion it is, therefore, only possible to enumerate ciliates in unfiltered samples.  相似文献   

15.
Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe2+ for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.  相似文献   

16.
The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h−1. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h−1, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria.  相似文献   

17.
Colourless sulfur bacteria and their role in the sulfur cycle   总被引:1,自引:0,他引:1  
Summary The bacteria belonging to the families of the Thiobacteriaceae, Beggiatoaceae and Achromatiaceae are commonly called the colourless sulfur bacteria. While their ability to oxidize reduced inorganic sulfur compounds has clearly been established, it is still not known whether all these organisms can derive metabolically useful energy from these oxidations. During the last decades research has mainly focussed on the genus Thiobacillus. Bacteria belonging to this genus can oxidize a variety of reduced inorganic sulfur compounds and detailed information is available on the biochemistry and physiology of these energy-yielding reactions. The thiobacilli, most of which can synthesize all cell material from CO2, possess a well-regulated metabolic machinery with high biosynthetic capacities, which is essentially similar to that of other procaryotic organisms. Although the qualitative role of colourless sulfur bacteria in the sulfur cycle is well documented, quantitative data are virtually absent. Activities of colourless sulfur bacteria in nature must be related to direct and indirect parameters, such as: the rate of oxidation of (S35) sulfur compounds, the rate of C14O2-fixation, the rate of acid production and numbers and growth rates of the bacteria. However, chemical reactions and similar activities of heterotrophic organisms mask the activities of the colourless sulfur bacteria to various extents, depending on the condition of the natural environment. This interference is minimal in regions where high temperature and/or low pH allow the development of a dominant population of colourless sulfur bacteria, such as hot acid sulfur springs, sulfide ores, sulfur deposits and some acid soils. The oxidation of inorganic sulfur compounds is carried out by a spectrum of sulfur-oxidizing organisms which includes: 1) obligately chemolithotrophic organisms 2) mixotrophs 3) chemolithotrophic heterotrophs 4) heterotrophs which do not gain energy from the oxidation of sulfur compounds but benefit in other ways from this reaction, and 5) heterotrophs which do not benefit from the oxidation of sulfur compounds. The spectrum is completed by a hypothetical group of heterotrophic organisms, which may have a symbiotic relationship with thiobacilli and related bacteria. Such heterotrophs may stimulate the growth of colourless sulfur bacteria and thereby contribute to the oxidation of sulfur compounds. Future research should focus in the first place on obtaining and studying pure cultures of many of the colourless sulfur bacteria. In the second place, studies on the physiological and ecological aspects of mixed cultures of colourless sulfur bacteria and heterotrophs may add to a better understanding of the role of the colourless sulfur bacteria in the sulfur cycle. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974.  相似文献   

18.
Although the absence of nitrate formation in grassland soils rich in organic matter has often been reported, low numbers of nitrifying bacteria are still found in these soils. To obtain more insight into these observations, we studied the competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis in the presence of Nitrobacter winogradskyi with soil columns containing calcareous sandy soil. The soil columns were percolated continuously at a dilution rate of 0.007 h-1, based on liquid volumes, with medium containing 5 mM ammonium and different amounts of glucose ranging from 0 to 12 mM.A. globiformis was the most competitive organism for limiting amounts of ammonium. The numbers of N. europaea and N. winogradskyi cells were lower at higher glucose concentrations, and the potential ammonium-oxidizing activities in the uppermost 3 cm of the soil columns were nonexistent when at least 10 mM glucose was present in the reservoir, although 107 nitrifying cells per g of dry soil were still present. This result demonstrated that there was no correlation between the numbers of nitrifying bacteria and their activities. The numbers and activities of N. winogradskyi cells decreased less than those of N. europaea cells in all layers of the soil columns, probably because of heterotrophic growth of the nitrite-oxidizing bacteria on organic substrates excreted by the heterotrophic bacteria or because of nitrate reduction at reduced oxygen concentrations by the nitrite-oxidizing bacteria. Our conclusion was that the nitrifying bacteria were less competitive than the heterotrophic bacteria for ammonium in soil columns but that they survived as viable inactive cells. Inactive nitrifying bacteria may also be found in the rhizosphere of grassland plants, which is rich in organic carbon. They are possibly reactivated during periods of net mineralization.  相似文献   

19.
Three distinct physiological types of sulfur-oxidizing bacteria were enriched and isolated from samples collected at several deep-sea hydrothermal vents (2,550 m) of the Galapagos Rift ocean floor spreading center. Twelve strains of the obligately chemolithotrophic genus Thiomicrospira were obtained from venting water and from microbial mats covering surfaces in the immediate vicinity of the vents. From these and other sources two types of obligately heterotrophic sulfur oxidizers were repeatedly isolated that presumably oxidized thiosulfate either to sulfate (acid producing; 9 strains) or to polythionates (base producing; 74 strains). The former were thiobacilli-like, exhibiting a thiosulfate-stimulated increase in growth and CO2 incorporation, whereas the latter were similar to previously encountered pseudomonad-like heterotrophs. The presence of chemolithotrophic sulfur-oxidizing bacteria in the sulfide-containing hydrothermal water supports the hypothesis that chemosynthesis provides a substantial primary food source for the rich populations of invertebrates found in the immediate vicinity of the vents.  相似文献   

20.
The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号