首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
异化Fe(III)还原微生物是厌氧环境中广泛存在的一类主要微生物类群,它们的共同特征是可以利用Fe(III)作为末端电子受体而获能。异化Fe(III)还原微生物具有强大的代谢功能,可还原许多有毒重金属包括一些放射性核素,还可降解利用许多有机污染物,在污染环境的生物修复中具有重要的应用价值。本文对异化Fe(III)还原微生物的分布、分类,代谢功能多样性以及异化Fe(III)还原的意义做了评述,旨在加强相关领域的研究人员对此的了解和重视,通过学科的交叉和合作加快我国在这一领域的研究。  相似文献   

2.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

3.
Anaeromyxobacter dehalogenans strain 2CP-C has been shown to grow by coupling the oxidation of acetate to the reduction of ortho-substituted halophenols, oxygen, nitrate, nitrite, or fumarate. In this study, strain 2CP-C was also found to grow by coupling Fe(III) reduction to the oxidation of acetate, making it one of the few isolates capable of growth by both metal reduction and chlororespiration. Doubling times for growth of 9.2 and 10.2 h were determined for Fe(III) and 2-chlorophenol reduction, respectively. These were determined by using the rate of [14C]acetate uptake into biomass. Fe(III) compounds used by strain 2CP-C include ferric citrate, ferric pyrophosphate, and amorphous ferric oxyhydroxide. The addition of the humic acid analog anthraquinone 2,6-disulfonate (AQDS) increased the reduction rate of amorphous ferric iron oxide, suggesting AQDS was used as an electron shuttle by strain 2CP-C. The addition of chloramphenicol to fumarate-grown cells did not inhibit Fe(III) reduction, indicating that the latter activity is constitutive. In contrast, the addition of chloramphenicol inhibited dechlorination activity, indicating that chlororespiration is inducible. The presence of insoluble Fe(III) oxyhydroxide did not significantly affect dechlorination, whereas the presence of soluble ferric pyrophosphate inhibited dechlorination. With its ability to respire chlorinated organic compounds and metals such as Fe(III), strain 2CP-C is a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.  相似文献   

4.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

5.
The reduction of iron(III) porphyrin hydroxides by the heterocyclic aromatic amines, pyridine, 1-methylimidazole and derivatives, occurs in toluene to give the bisamine iron(II) porphyrin complexes. The reaction has not been fully characterized but is found to proceed through a different mechanism from that reported for the similar reductions by 1° and 2° amines in the absence of hydroxide ion. Preliminary data indicate that the first step in the reduction is formation of the bisamine Fe(III) porphyrin complex from the hydroxide. Nucleophilic attack by hydroxide ion on the aromatic ring of an axially ligated pyridine or methylimidazole of the Fe(III) complex followed by homolytic cleavage of the FeN bond is proposed.  相似文献   

6.
The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)-citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.  相似文献   

7.
Microbial metabolism plays a pivotal role in controlling the solubility and mobility of radionuclides in waters contaminated by nuclear waste. The distribution and activity of dissimilatory Fe(III)-reducing bacteria are of particular importance because they can alter the solubility of radionuclides via direct enzymatic reduction or by indirect mechanisms catalyzed via a range of electron shuttling compounds. Using a combination of the techniques of microbiology, biochemistry, and molecular biology, we have characterized the mechanisms of electron transfer to key radionuclides by Fe(III)-reducing bacteria. The mechanisms of enzyme-mediated reduction of problematic actinides, principally U(VI) but including Pu(IV) and Np(V), are described in this review. In addition, the mechanisms by which the fission product Tc(VII) is reduced are also discussed. Direct enzymatic reductions of Tc(VII), catalyzed by microbial hydrogenases, are described along with indirect mechanisms catalyzed by microbially produced Fe(II). Finally, we describe new results that demonstrate the transfer of electrons from biogenic U(IV) to Tc(VII), leading to coprecipitation of Tc(IV) and U(IV), and opening the way for treatment of liquid wastes cocontaminated with both uranium and technetium in one step.  相似文献   

8.
Bacterial crystalline Fe(III) oxide reduction has the potential to significantly influence the biogeochemistry of anaerobic sedimentary environments where crystalline Fe(III) oxides are abundant relative to poorly crystalline (amorphous) phases. A review of published data on solid-phase Fe(III) abundance and speciation indicates that crystalline Fe(III) oxides are frequently 2- to S 10-fold more abundant than amorphous Fe(III) oxides in shallow subsurface sediments not yet subjected to microbial Fe(III) oxide reduction activity. Incubation experiments with coastal plain aquifer sediments demonstrated that crystalline Fe(III) oxide reduction can contribute substantially to Fe(II) production in the presence of added electron donors and nutrients. Controls on crystalline Fe(III) oxide reduction are therefore an important consideration in relation to the biogeochemical impacts of bacterial Fe(III) oxide reduction in subsurface environments. In this paper, the influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides is reviewed and analyzed in light of new experiments conducted with the acetate-oxidizing, Fe(III)-reducing bacterium (FeRB) Geobacter metallireducens . Previous experiments with Shewanella algae strain BrY indicated that adsorption and/or surface precipitation of Fe(II) on Fe(III) oxide and FeRB cell surfaces is primarily responsible for cessation of goethite ( f -FeOOH) reduction activity after only a relatively small fraction (generally < 10%) of the oxide is reduced. Similar conclusions are drawn from analogous studies with G. metallireducens . Although accumulation of aqueous Fe(II) has the potential to impose thermodynamic constraints on the extent of crystalline Fe(III) oxide reduction, our data on bacterial goethite reduction suggest that this phenomenon cannot universally explain the low microbial reducibility of this mineral. Experiments examining the influence of exogenous Fe(II) (20 mM FeCl 2 ) on soluble Fe(III)-citrate reduction by G. metallireducens and S. algae showed that high concentrations of Fe(II) did not inhibit Fe(III)-citrate reduction by freshly grown cells, which indicates that surface-bound Fe(II) does not inhibit Fe(III) reduction through a classical end-product enzyme inhibition mechanism. However, prolonged exposure of G. metallireducens and S. algae cells to high concentrations of soluble Fe(II) did cause inhibition of soluble Fe(III) reduction. These findings, together with recent documentation of the formation of Fe(II) surface precipitates on FeRB in Fe(III)-citrate medium, provide further evidence for the impact of Fe(II) sorption by FeRB on enzymatic Fe(III) reduction. Two different, but not mutually exclusive, mechanisms whereby accumulation of Fe(II) coatings on Fe(III) oxide and FeRB surfaces may lead to inhibition of enzymatic Fe(III) oxide reduction activity (in the absence of soluble electron shuttles and/or Fe(III) chelators) are identified and discussed in relation to recent experimental work and theoretical considerations.  相似文献   

9.
Ability to reduce insoluble Fe(III) compounds has not been shown for alkaliphilic lithotrophic sulfate and sulfur reducers. Detection of this metabolic process in sulfidogenic prokaryotes could significantly expand the present knowledge on physicochemical range of their growth and physiological activity, which is now limited by low negative ambient redox potential. Capacity for direct reduction of Fe(III) from chemically synthesized ferrihydrite was tested for eight species of hydrogenotrophic haloalkaliphilic sulfidogens grown with formate or H2 as electron donors in the absence of sulfur compounds in the medium. Out of eight tested species, six reduced iron with formate and five, with hydrogen as the electron donor. Iron reduction correlated with stimulation of growth on formate or hydrogen only in two sulfidogenic species. Analysis of available genomes of five tested species revealed that only Dethiobacter alkaliphilus and Desulfuribacillus alkaliarsenatis possess the gene sets of multiheme cytochromes c required for typical dissimilatory iron reduction. The presence of these genes in two strains with high iron-reducing activity indicates the capacity of some haloalkaliphilic sulfidogenic bacteria for carrying out direct dissimilatory reduction of insoluble Fe(III) forms in the absence of sulfur-containing electron acceptors, i.e., without using sulfide as a soluble mediator of iron reduction. In other studied microorganisms, the ability to reduce iron is probably caused by nonspecific metabolic activity and is not directly linked to energy generation for growth, although the rates of Fe(III) reduction determined in our experiments make it possible to suggest significant role of sulfidogenic microorganisms (normally reducing sulfur and sulfate) in the iron cycle in haloalkaline ecosystems upon decreased content of sulfur compounds.  相似文献   

10.
The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to examine the relationship between adhesion and dissimilatory Fe(III) oxide reduction. Adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO) was correlated with ionic strength and thus was accurately described by the DLVO theory. Reduction of insoluble HFO was also correlated with KCl concentration. In contrast, there was no correlation between soluble Fe(III) reduction and ionic strength. A correlation between HFO reduction rate and adhesion to HFO was observed. These results provide direct evidence that adhesion is requisite for Fe(III) oxide reduction in the absence of soluble electron shuttles. Received: 26 October 1999 / Accepted: 22 November 1999  相似文献   

11.
Physiological strategies driving the reduction of poorly crystalline Fe(III) oxide by the thermophilic Gram-positive dissimilatory Fe(III)-reducing bacterium C. ferrireducens were evaluated. Direct cell-to-mineral contact appears to be the major physiological strategy for ferrihydrite reduction. This strategy is promoted by cell surface-associated c-type cytochromes, and the extracellular electron transfer to ferrihydrite is linked to energy generation via a membrane-bound electron transport chain. The involvement of pili-like appendages in ferrihydrite reduction has been detected for the first time in a thermophilic microorganism. A supplementary strategy for the utilization of a siderophore (DFO) in dissimilatory ferrihydrite reduction has also been characterized.  相似文献   

12.
Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies on microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area (HSA) goethite. Cryogenic (12K) 57Fe Mössbauer spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) [Fe(II)-phyllosilicate] in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl2?2H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26–87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.  相似文献   

13.
Studies with the dissimilatory Fe(III)-reducing microorganism Geobacter metallireducens demonstrated that the common technique of separating Fe(III)-reducing microorganisms and Fe(III) oxides with semipermeable membranes in order to determine whether the Fe(III) reducers release electron-shuttling compounds and/or Fe(III) chelators is invalid. This raised doubts about the mechanisms for Fe(III) oxide reduction by this organism. However, several experimental approaches indicated that G. metallireducens does not release electron-shuttling compounds and does not significantly solubilize Fe(III) during Fe(III) oxide reduction. These results suggest that G. metallireducens directly reduces insoluble Fe(III) oxide.  相似文献   

14.
Sulfate-reducing and methanogenic microorganisms become inactive when the concentration of the electron donors drops below a threshold set by the minimum Gibbs free energy required for the bacterial metabolism to be maintained. Thus, their activity is thermodynamically controlled. In this paper we study if the activity of dissimilatory Fe(III) reducing bacteria is also limited by the thermodynamics of the reaction. We synthesized five Fe (III) (hydr)oxides (FHOs) of moderate stability and determined the solubility product (log K SO (?39.1)-(?41.8)), in order to calculate their standard free energy of formation. K SO values, estimated from the particle size did not correspond with experimentally determined ones. HCO3 ? and PIPES-buffered media, containing 45 mM FHO and either 1, 10, or 100 mM acetate were inoculated with Geobacter metallireducens. At the end of bacterial reduction, the Gibbs free energy of the reaction showed significant differences between the different FHOs. The termination of the bacterial activity was consequently not triggered thermodynamically. However, the non-dissolved Fe(II) (HCl-soluble minus soluble Fe(II)) showed an excellent correlation with the surface of the FHOs (15 μmol m?2). It is therefore likely that the termination of the reaction was caused by blocking of the FHO surface with insoluble Fe(II), as has been previously reported in the literature. The ecological significance of both thermodynamic limitation and surface availability limitation is discussed for FHOs of different K SO in environments with approximately neutral pH.  相似文献   

15.
Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low-temperature (12 K) Mossbauer spectroscopy was used to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II) phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)-oxide utilization dominated (70–100%) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10–20%) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the Fe(III)-phyllosilicate/total Fe(III) ratio. This finding suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III) oxide reduction  相似文献   

16.
The banded iron formations (BIF) of Brazil are composed of silica and Fe(III) oxide lamina, and are largely covered by a rock cap of BIF fragments in a goethite matrix (canga). Despite both BIF and canga being highly resistant to erosion and poorly soluble, >3,000 iron ore caves (IOCs) have formed at their interface. Fe(III) reducing microorganisms (FeRM) can reduce the Fe(III) oxides present in the BIF and canga, which could account for the observed speleogenesis. Here, we show that IOCs contain a variety of microbial taxa with member species capable of dissimilatory Fe(III) reduction, including the Chloroflexi, Acidobacteria and the Alpha- Beta- and Gammaproteobacteria; however, Fe(III) reducing enrichment cultures from IOCs indicate the predominance of Firmicutes and Enterobacteriaceae, despite varying the carbon/electron donor, Fe(III) type, and pH. We used model-based inference to evaluate multiple candidate hypotheses that accounted for the variation in medium chemistry and culture composition. Model selection indicated that none of the tested variables account for the dominance of the Firmicutes in these cultures. The addition of H2 to the headspace of the enrichment cultures enhanced Fe(III) reduction, while addition of N2 resulted in diminished Fe(III) reduction, indicating that these Enterobacteriaceae and Firmicutes were reducing Fe(III) during fermentative growth. These results suggest that fermentative reduction of Fe(III) may play a larger role in iron-rich environments than expected. Our findings also demonstrate that FeRM are present within the IOCs, and that their reductive dissolution of Fe(III) oxides, combined with mass transport of solubilized Fe(II) by groundwater, could contribute to IOC formation.  相似文献   

17.
18.
Two Tn5-generated mutants of Shewanella putrefaciens with insertions in menD and menB were isolated and analyzed. Both mutants were deficient in the use of several terminal electron acceptors, including Fe(III). This deficiency was overcome by the addition of menaquinone (vitamin K(2)). Isolated membrane fractions from both mutants were unable to reduce Fe(III) in the absence of added menaquinone when formate was used as the electron donor. These results indicate that menaquinones are essential components for the reduction of Fe(III) by both whole cells and purified membrane fractions when formate or lactate is used as the electron donor.  相似文献   

19.
Shewanella oneidensis respires a variety of terminal electron acceptors, including solid phase Fe(III) oxides. S. oneidensis transfers electrons to Fe(III) oxides via direct (outer membrane- or nanowire-localized c-type cytochromes) and indirect (electron shuttling and Fe(III) solubilization) pathways. In the present study, the influence of anaerobic biofilm formation on Fe(III) oxide reduction by S. oneidensis was determined. The gene encoding the activated methyl cycle (AMC) enzyme S-ribosylhomocysteine lyase (LuxS) was deleted in-frame to generate the corresponding mutant ΔluxS. Conventional biofilm assays and visual inspection via confocal laser scanning microscopy indicated that the wild-type strain formed anaerobic biofilms on Fe(III) oxide-coated silica surfaces, while the ΔluxS mutant was severely impaired in anaerobic biofilm formation on such surfaces. Cell-hematite attachment isotherms demonstrated that the ΔluxS mutant was also severely impaired in attachment to hematite surfaces under anaerobic conditions. The S. oneidensis ΔluxS mutant, however, reduced Fe(III) at wild-type rates during anaerobic incubation with Fe(III) oxide-coated silica surfaces or in batch cultures with Fe(III) oxide or hematite as a terminal electron acceptor. Anaerobic biofilm formation by the ΔluxS mutant was restored to wild-type rates by providing a wild-type copy of luxS in trans or by the addition of AMC or transsulfurylation pathway metabolites involved in organic sulfur metabolism. LuxS is thus required for wild-type anaerobic biofilm formation on Fe(III) oxide surfaces, yet the inability to form wild-type anaerobic biofilms on Fe(III) oxide surfaces does not alter Fe(III) oxide reduction activity.  相似文献   

20.
Nomega-Hydroxy-L-arginine, the intermediate in nitric oxide formation from L-arginine catalyzed by NO synthase, can be released into the extracellular space. It has been suggested that it can circulate and exert paracrine effects. Since it cannot only be used as substrate by NO synthases, but can also be oxidized by cytochrome P450 and other hemoproteins in a superoxide-dependent manner, it has been proposed that it can serve as NO donor. In the present study, the in vitro reduction of Nomega-hydroxy-L-arginine was examined. Pig and human liver microsomes as well as pig liver mitochondria were capable of reducing Nomega-hydroxy-L-arginine to L-arginine in an oxygen-insensitive enzymatic reaction. These results demonstrate that this metabolic pathway has to be considered when suggesting Nomega-hydroxy-L-arginine as NO-precursor. The reconstituted liver microsomal system of a pig liver CYP2D enzyme, the benzamidoxime reductase, was unable to replace microsomes to produce L-arginine from Nomega-hydroxy-L-arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号