首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
SUMMARY: The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development.  相似文献   

3.
Ma J  Yan B  Qu Y  Qin F  Yang Y  Hao X  Yu J  Zhao Q  Zhu D  Ao G 《Journal of cellular biochemistry》2008,105(1):136-146
In flowering plants, pollen formation depends on the differentiation and interaction of two cell types in the anther: the reproductive cells, called microsporocytes, and somatic cells that form the tapetum. Previously, we cloned a pollen specific gene, zm401, from a cDNA library generated from the mature pollen of Zea mays. Expression of partial cDNA of zm401 in maize and ectopic expression of zm401 in tobacco suggested it may play a role in anther development. Here we present the expression and functional characterization of this pollen specific gene in maize. Zm401 is expressed primarily in the anthers (tapetal cells as well as microspores) in a developmentally regulated manner. That is, it is expressed from floret forming stage, increasing in concentration up to mature pollen. Knockdown of zm401 significantly affected the expression of ZmMADS2, MZm3-3, and ZmC5, critical genes for pollen development; led to aberrant development of the microspore and tapetum, and finally male-sterility. Zm401 possesses highly conserved sequences and evolutionary conserved stable RNA secondary structure in monocotyledon. These data show that zm401 could be one of the key growth regulators in anther development, and functions as a short-open reading-frame mRNA (sORF mRNA) and/or noncoding RNA (ncRNA).  相似文献   

4.
The developmental events of florets and a critical stage for sex determination in two wild-rice populations (Zizania palustris cv. Franklin and Zizania palustris cv. K-2Pi) have been identified. Formation of bisexual florets precedes the development of both male and female florets. Developmental indicators, established by measuring the length of florets and panicles, indicate that the critical stage for sex determination occurs when floret and panicle lengths are 1-2 mm and 3 cm, respectively. The stage of floret development at which sex determination occurs is the same in the two investigated wild-rice populations. Organ suppression in bisexual florets is an essential step for sex determination during the formation of unisexual florets. Histological examination of suppressed stamens or pistils in unisexual florets of wild-rice indicates that cell death does not occur during sex determination. In addition, the length of anthers and pistils in bisexual florets indicates that floral development in the transition zone is normal when compared with the male florets in the male spikelets and female florets in the female spikelets.  相似文献   

5.
The complicated genetic pathway regulates the developmental programs of male reproductive organ, anther tissues. To understand these molecular mechanisms, we performed cDNA microarray analyses and in situ hybridization to monitor gene expression patterns during anther development in rice. Microarray analysis of 4,304 cDNA clones revealed that the hybridization signal of 396 cDNA clones (271 non-redundant groups) increased more than six-fold in every stage of the anthers compared with that of leaves. Cluster analysis with the expression data showed that 259 cDNA clones (156 non redundant groups) were specifically or predominantly expressed in anther tissues and were regulated by developmental stage-specific manners in the anther tissues. These co-regulated genes would be important for development of functional anther tissues. Furthermore, we selected several clones for RNA in situ hybridization analysis. From these analyses, we found several novel genes that show temporal and spatial expression patterns during anther development in addition to anther-specific genes reported so far. These results indicate that the genes identified in this experiment are controlled by different programs and are specialized in their developmental and cell types.  相似文献   

6.
Maize is a monoecious species that produces imperfect (unisexual), highly derived flowers called florets. Within the spikelet, the basic repeating unit of the maize inflorescence, the spikelet meristem gives rise to an upper and a lower floret. Although initially bisexual, floret unisexuality is established through selective organ elimination. In addition, the lower floret of each ear spikelet is aborted early in its development, leaving the upper floret to mature as the only pistillate floret. Expression from the cytokinin-synthesizing isopentenyl transferase (IPT) enzyme under the control of the Arabidopsis senescence-inducible promoter SAG (senescence associated gene)12 was observed during early maize floret development. Moreover, the lower floret was rescued from abortion, resulting in two functional florets per spikelet. The pistil in each floret was fertile, but the spikelet produced just one kernel composed of a fused endosperm with two viable embryos. The two embryos were genetically distinct, indicating that they had arisen from independent fertilization events. These results suggest that cytokinin can determine pistil cell fate during maize floret development.  相似文献   

7.
The occurrence of enzymes associated with bean leaf abscission was investigated in bean (Phaseolus vulgaris) flower reproductive organs in which catabolic cell wall events are essential during anther and pistil development. Cellulase activity was detected in high levels in both pistil and anthers of bean flowers before anthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified a protein in anthers and pistil with the same size (51 kilodaltons) and serologically closely related to the abscission cellulase. The accumulation of 9.5 cellulase protein in the anther is developmentally regulated and increases from undetectable levels at very young stages of anther development to high levels as the anther matures. In the pistil, the 9.5 cellulase was localized in the upper part of the pistil where the stigma and the stylar neck reside and was detected in the youngest developmental stage analyzed. Antibodies against basic chitinase, which accumulates to high levels in abscission zones after exposure to ethylene, identified a protein with the same size (33 kilodaltons) and serologically closely related, in both anthers and upper portion of the pistil. In contrast, a 45-kilodalton protein and the basic β-1,3-glucanase associated with abscission were undetected in bean reproductive organs. Interestingly, β-1,3-glucanase activity was detected in young bean anthers and decreased at anthesis, but the anther β-1,3-glucanase is serologically unrelated to the basic β-1,3-glucanase. Thus, it appears that the basic cellulase and chitinase occur in combination in many plant processes that require major cell wall disruption, whereas hemicellulases such as β-1,3-glucanase are specific to each process.  相似文献   

8.
9.
10.
Hsu YF  Wang CS  Raja R 《Planta》2007,226(2):311-322
Although gene expression profile of pollen has been described, there is limited information regarding a particular phase during anther/pollen development. This work characterizes gene expression pattern at desiccation in lily (Lilium longiflorum Thunb. cv Snow Queen) anthers. We have applied a suppression-subtractive hybridization (SSH) strategy, through which 90 clones were identified and sequenced. These clones resulted in the identification of 42 individual cDNAs among which 33 genes were specifically expressed at the desiccation phase of anthers of >150-mm buds. Fourteen cDNAs were chosen for further examination. Six genes were both dehydration- and abscisic acid (ABA)-inducible whereas the other eight genes were apparently dehydration-irrelevant. The group of dehydration- and ABA-induced genes was also induced by desiccation that developmentally occurs in the anther. The application of fluridone has a significant effect of inhibition on mRNA accumulation of these genes in maturing anthers during which desiccation occurs. Pollen germination analysis indicated that, of those dehydration-irrelevant genes, three were ABA-responsive and the other five were not. Thus, three separate signal pathways that function in the activation of late genes at desiccation during anther development are established. The first is the ABA-dependent pathway induced by environmental stress of dehydration. The other two pathways of signaling triggered by developmental cues, through which one is ABA-dependent and another is ABA-independent. The 14 gene proteins showed spatial and temporal expression patterns and may participate in membrane/cell wall synthesis, cytoskeletal organization, signaling, RNA binding, ubiquitin-mediated degradation and transportation during germination and tube growth. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Although maize endosperm undergoes programmed cell death during its development, it is not known whether this developmental feature is common to cereals or whether it arose inadvertently from the selection process that resulted in the enlarged endosperm of modern maize. Examination of wheat endosperm during its development revealed that this tissue undergoes a programmed cell death that shares features with the maize program but differs in some aspects of its execution. Cell death initiated and progressed stochastically in wheat endosperm in contrast to maize where cell death initiates within the upper central endosperm and expands outward. After a peak of ethylene production during early development, wheat endosperm DNA underwent internucleosomal fragmentation that was detectable from mid to late development. The developmental onset and progression of DNA degradation was regulated by the level of ethylene production and perception. These observations suggest that programmed cell death of the endosperm and regulation of this program by ethylene is not unique to maize but that differences in the execution of the program appear to exist among cereals.  相似文献   

12.
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.  相似文献   

13.
The number and developmental stages of florets were determinedin each spikelet of the spike in the main shoots of spring wheat.Samples were taken frequently from plants grown in a phytotronand in a nitrogen application field-test. Ten stages of development,from floret initiation until anthesis, were recognized and described. Inter-spikelet variation in the total number of initiated floretswas rather small. However, the number of florets at advancedstages of development, as well as the number of grains, washighest in the central spikelets in which florets initiatedfirst. Floret initiation did not proceed beyond spike emergence,whereafter the distal florets and the spikelet apex degenerated.Grain-set was restricted to florets which had developed at leastto the stage of visible anther lobes at spike emergence. Thenumber of these florets was increased significantly by nitrogenapplication. Wheat, Triticum aestivum L., spikelet, floret, grain set, nitrogen  相似文献   

14.
15.
16.
17.
The normal pattern of maize floral development of staminate florets on the terminal inflorescence (tassel) and pistillate florets on the lateral inflorescences (ears) is disrupted by the recessive mutation tassel seed 2. Tassel seed 2 mutant plants develop pistillate florets instead of staminate florets in the tassel. In addition, the ears of tassel seed 2 plants display irregular rowing of kernels due to the development of the normally suppressed lower floret of each spikelet. The morphology of tassel and ear florets of the recessive maize mutant tassel seed 2 has been compared to those of wild-type maize through development. We have identified the earliest stages at which morphological signs of sex differentiation are evident. We find that sex determination occurs during the same stage on tassel and ear development. Early postsex determination morphology of florets in wild-type ears and in tassel seed 2 tassels and ears is identical.  相似文献   

18.
Maize male reproductive development is complex and lengthy, and anther formation and pollen maturation are precisely and spatiotemporally regulated. Here, we document that callose, somatic, and microspore defect 1 (csmd1), a new male-sterile mutant, has both pre-meiotic somatic and post-meiotic gametophyte and somatic defects. Chromosome behavior and cell developmental events were monitored by nuclear staining viewed by bright field microscopy; cell dimensions were charted by Volocity analysis of confocal microscopy images. Aniline blue staining and quantitative assays were performed to record callose deposition, and expression of three callose synthase genes was measured by qRT-PCR. Despite numerous defects and unlike other maize male-sterile mutants that show growth arrest coincident with locular defects, csmd1 anther elongation is nearly normal. Pre-meiotically and during prophase I, there is excess callose surrounding the meiocytes. Post-meiotically csmd1 epidermal cells have impaired elongation but excess longitudinal divisions, and uninucleate microspores cease growth; the microspore nucleoli degrade followed by cytoplasmic vacuolization and haploid cell collapse. The single vascular bundle within csmd1 anthers senesces precociously, coordinate with microspore death. Although csmd1 anther locules contain only epidermal and endothecial cells at maturity, locules are oval rather than collapsed, indicating that these two cell types suffice to maintain an open channel within each locule. Our data indicate that csmd1 encodes a crucial factor important for normal anther development in both somatic and haploid cells, that excess callose deposition does not cause meiotic arrest, and that developing pollen is not required for continued maize anther growth.  相似文献   

19.
Two Pelargonium 1-aminocyclopropane-1-carboxylate (ACC) synthase cDNAs (GAC-1 and GAC-2) were identified and characterized. GAC-1 is 1934 bp long with a 1446-bp open reading frame encoding a 54.1-kD polypeptide. GAC-2 is a 1170-bp-long ACC synthase polymerase chain reaction fragment encoding 390 amino acids. Expression of GAC-1 and GAC-2 together with a previously identified ACC oxidase (GEFE-1) was examined in different Pelargonium plant parts, and leaves were subjected to osmotic stress (sorbitol), metal ion stress (CuCl2), auxin (2,4-dichlorophenoxyacetic acid [2,4-D]), and ethylene. GAC-1 expression was not detectable in any of the plant parts tested, whereas high levels of GAC-2 were expressed in the leaf bud, young leaf, young floret, fully open floret, and senescing floret. GAC-2 was expressed to a lesser degree in fully expanded leaves or roots and was undetectable in old leaves and floret buds. GEFE-1 was detectable at all leaf ages tested, in young and fully open florets, and in the roots; however, the highest degree of expression was in the senescing florets. GAC-1 was induced by sorbitol. Both GAC-1 and GAC-2 were only slightly affected by CuCl2 and induced indirectly by 2,4-D. GEFE-1 was highly induced by sorbitol, CuCl2, and 2,4-D. GAC-1, GAC-2, and GEFE-1 were unaffected by ethylene treatment. These results suggest that GAC-1 is only induced by stress and that GAC-2 may be developmentally regulated, whereas GEFE-1 is influenced by both stress and development.  相似文献   

20.
Wheat floret survival as related to pre-anthesis spike growth   总被引:2,自引:0,他引:2  
Further improvements to wheat yield potential will be essential to meet future food demand. As yield is related to the number of fertile florets and grains, an understanding of the basis of their generation is instrumental to raising yield. Based on (i) a strong positive association between the number of fertile florets or grains and spike dry weight at anthesis; and (ii) the finding that floret death occurs when spikes grow at maximum rate, it was always assumed that floret survival depends on the growth of the spike. However, this assumption was recently questioned, suggesting that assimilates diverted to the spike do not determine the number of florets and grains and that the onset of floret death may instead be a developmental process that is not associated with spike growth. In this study, the relationships between the fate of floret primordia and spike growth from six independent experiments that included different growing conditions (greenhouse/field experiments, growing seasons, photoperiod/shading treatments during the floret primordia phase) and diverse cultivar types (winter/spring, semi-dwarf/standard-height, photoperiod sensitive/insensitive) were re-analysed together. Onset of floret death was associated with the beginning of spike growth at the maximum rate in c. 80% of the cases analysed; and the rate of floret death (the main determinant of floret survival) showed a negative quantitative relationship with spike weight at anthesis. As floret death and survival were shown to be linked to pre-anthesis spike growth, the strategy of focusing on traits associated with pre-anthesis spike growth when breeding to increase wheat yield potential further is valuable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号