首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The availability of sufficient irrigation water and the development of drought-tolerant species are challenging factors in the design and maintenance of green roofs in modern cities. Green roof plants of Petunia hybrid Headliner® Red Star, Ageratum hybrid Artist® blue, and Mentha spicata L. grown in a simulated green roof pot system under controlled greenhouse conditions. The plants were watered every 2 or 6 days (2DWI/6DWI) for 8 weeks accompanied by either a 6-day treatment of seaweed extracts of Ascophyllum nodosum as a soil drench or foliar spray, or two concentrations of trinexapac-ethyl (TE) biweekly sprays. Following treatments, leaf number, leaf area, dry weights, plant height, stomatal conductanse, photosynthetic and transpiration rates and leaf water potential and relative water content were determined in two seasons during 2016 and 2017. The prolonged irrigation intervals reduced plant growth as revealed by morphological and physiological parameters. The application of SWE as drench treatment improved Petunia and Ageratum plant vegetative growth, stomatal conductance, photosynthetic and transpiration rates and leaf water potential and relative water content during prolonged irrigation intervals. TE increased the vegetative growth as well as the physiological performance of Ageratum plants. However, neither SWE nor TE treatments improved the performance of Mentha plants under prolonged irrigation intervals. It was suggested that improved photosynthetic rates were stimulated by enhanced stomatal conductance leading to improved leaf water potential as well as increased relative water content during prolonged irrigation conditions.  相似文献   

4.
Plant aquaporins are believed to facilitate water transport across cell membranes. However, the relationship between aquaporins and drought resistance in plants remains unclear. VfPIP1, a putative aquaporin gene, was isolated from Vicia faba leaf epidermis, and its expression was induced by abscisic acid (ABA). Our results indicated that the VfPIP1 protein was localized in the plasma membrane, and its expression in V. faba was induced by 20% polyethylene glycol 6000. To further understand the function of VfPIP1, we obtained VfPIP1-expressing transgenic Arabidopsis thaliana plants under the control of the CaMV35S promoter. As compared to the wild-type control plants, the transgenic plants exhibited a faster growth rate, a lower transpiration rate, and greater drought tolerance. In addition, the stomata of the transgenic plants closed significantly faster than those of the control plants under ABA or dark treatment. These results suggest that VfPIP1 expression may improve drought resistance of the transgenic plants by promoting stomatal closure under drought stress.  相似文献   

5.
Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.  相似文献   

6.
Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa × B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.  相似文献   

7.
Drought is one of the major abiotic stresses restricting the yield of wheat (Triticum aestivum L.). Breeding wheat varieties with drought tolerance is an effective and durable way to fight against drought. Here we reported introduction of AtHDG11 into wheat via Agrobacterium-mediated transformation and analyzed the morphological and physiological characteristics of T2 generation transgenic lines under drought stress. With drought treatment for 30 days, transgenic plants showed significantly improved drought tolerance. Compared with controls, the transgenic lines displayed lower stomatal density, lower water loss rate, more proline accumulation and increased activities of catalase and superoxide dismutase. Without irrigation after booting stage, the photosynthetic parameters, such as net photosynthesis rate, water use efficiency and efficiency of excitation energy, were increased in transgenic lines, while transpiration rate was decreased. Moreover, the kernel yield of transgenic lines was also improved under drought condition. Taken together, our data demonstrate that AtHDG11 has great potential in genetic improvement of drought tolerance of wheat.  相似文献   

8.
Cold stress is one of the major limitations to crop productivity worldwide. We investigated the effects of multiple gene expression from cold tolerant Capsella bursa-pastoris in transgenic tobacco (Nicotiana tabaccum) plants. We combined CblCE53 and CbCBF into a reconstruct vector by isocaudomers. Plant overexpression of CbICE53 under the stress inducible CbCOR15b promoter and CbCBF under a constitutive promoter showed increased tolerance to both chilling and freezing temperatures in comparison to wild-type plants, according to the electrolyte leakage and relative water content. The expressions of endogenous cold-responsive genes in transgenic tobacco (NtDREB1, NtDREB3, NtERD10a and NtERD10b) were obviously upregulated under normal and low temperature conditions. These results suggest that the CbICE53 + CbCBF transgenic plants showed a much greater cold tolerance as well as no dwarfism and delayed flowering. Thus they can be considered as a potential candidate for transgenic engineering for cold tolerant tobacco.  相似文献   

9.
10.
Identification and characterization of plant promoters from wild rice genotypes showing inducible expression under soil water stress (SWS) is desirable for transgene expression to generate stress tolerant rice cultivars. A comparative expression profiling of Wsi18, a group 3 LEA gene, revealed differential response under SWS conditions between modern cultivated rice (IR20) and its wild progenitor (Oryza nivara). Wsi18 promoter from O. nivara showed enhanced inducible expression of the reporter gusA gene, encoding β-glucuronidase, in transgenic rice plants in comparison to similar promoter from IR20. Deletion analysis unravelled the cis-acting regulatory elements minimally required for optimal expression of Wsi18 promoter from O. nivara under SWS condition. This is the first report of characterization of an inducible promoter from a wild rice genotype to drive the gene expression under water stress conditions. The Wsi18 promoter element from the wild rice genotype can be used in future genetic manipulation strategies for the generation of SWS tolerant rice cultivars with improved yield characteristics.  相似文献   

11.
An investigation was carried out to find out the extent of changes occurred in two safflower (Carthamus tinctorius L.) cultivars in response to water deficit stress. Two safflower cultivars namely IL.111 and Isfahan were used for the study. Thirty days after sowing, plants were grown under soil moisture corresponding to 100, 85, 70 and 55% field capacity for next 30 days. Water deficit treatments significantly decreased the shoot length, shoot dry matter, root dry matter, relative growth rate, leaf relative water content (LRWC) and leaf water potential (ΨW), whereas root length, root-to-shoot ratio, lipid peroxidation and antioxidant compounds such as ascorbic acid (AA), α-tocopherol (α-Toc) and reduced glutathione (GSH) and superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and peroxidase (POX, EC 1.11.1.7) activities were increased. Water deficit stressed plants maintained higher levels of compounds and scavenging enzymes. Significant differences were observed between cultivars and irrigation levels treatments. The cv. IL.111 could be considered more tolerant to water stress than cv. Isfahan, registering greater biomass, LRWC and leaf water potential (ΨW), associated with high antioxidant activity.  相似文献   

12.
13.
Vetiver grass [Vetiveria zizanioides (L.) Nash] displays comprehensive abiotic stress tolerance closely related to fine maintenance of plant water relation mediated by plasma membrane intrinsic proteins (PIPs). Two open reading frame sequences of PIPs (867 and 873 bp) were cloned from vetiver grass and named as VzPIP1;1 and VzPIP2;1, respectively. Expression of green fluorescent protein revealed only subcellular localization of VzPIP2;1 in the plasma membrane. Agrobacterium tumefaciens mediated transgenic (VzPIP2;1) soybean plants had a higher water content in above-ground parts under sufficient water supply through enhancing transpiration as compared to the non-transgenic plants but displayed a more severe drought injury because of a lower photosynthesis and a higher transpiration rate. However, A. rhizogenes mediated transgenic soybean plants kept a higher water content in above-ground parts by improving root water transport and kept a more effective photosynthesis under normal and drought conditions.  相似文献   

14.
15.
Chrysanthemum is one of the most important commercial cut flowers in the world. Early-flowering cultivars are required to produce quality chrysanthemum flowers with a lower cost of production. To shorten the vegetative growth phase of chrysanthemum, three AP1-like genes from Asteraceae were constitutively overexpressed in 80 independent transgenic chrysanthemum lines. All lines were characterized by PCR and RT-PCR and demonstrated that overexpression of compositae AP1-homologs in transgenic chrysanthemum under long-day conditions had no effect on plant development compared to non-transgenic controls. Conversely, under short-day conditions, transgenic plants commenced bud initiation 2 wk earlier than non-transgenic chrysanthemum plants. Subsequently, transgenic chrysanthemum flowers showed color earlier and resulted in full opening of inflorescences 3 wk prior to non-transgenic control plants. These results open new possibilities for genetic improvement and breeding of chrysanthemum cultivars.  相似文献   

16.
Peng Y  Lin W  Cai W  Arora R 《Planta》2007,226(3):729-740
Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.  相似文献   

17.
18.
Seasonal drought may have a high impact on the karst ecosystem. The transpiration from Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hilly slope in South China was measured during the dry period of 2006 by using the Granier’s sap-flow method. During the experimental period, maximum sap flux density (J s) ranged from 20 to 40 g H2O m−2 s−1 according to diameter of breast height (DBH) of individual trees. On sunny days, daily transpiration varied between 3.4 and 1.8 mm day−1. Transpiration of C. glauca was closely correlated to the radiation, air temperature, and vapor pressure deficit (VPD). Soil moisture was a very important factor influencing transpiration. The very low soil water content might result in low stand transpiration even when VPD is high, but high soil water content might also result in low transpiration if it was low VPD. However, VPD rather than soil moisture, affected largely the stand transpiration under high soil water content. The amount of transpiration was much more than that of the total soil moisture loss during the continuous sunny days, indicating that the dry shallow soils were probably not the only source for root-uptake water. C. glauca grows deep roots through the rock fissures of epikarst, indicating that epikarst might be another main source for sustaining transpiration in response to dry demand in autumn. Therefore, a large amount of deep roots of karst species would be a very important hydraulic connecting from the epikarst to above ground by transpiration, which would promote the biogeochemical process in a karst system.  相似文献   

19.
Water is a main factor limiting plant growth. Integrative responses of leaf traits and whole plant growth to drought will provide implications to vegetation restoration. This study investigated the drought responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. with a focus on leaf morphology and physiology, seedling growth and biomass partitioning. Potted 1-year-old seedlings were subjected to four water supply regimes [75, 55, 35 and 15% field capacity (FC)], served as control, mild water stress, moderate water stress and severe water stress. Leaf morphological traits varied to reduce the distance of water transfer under water stress and leaflets were dispersed with drought. Net photosynthetic rate decreased significantly under water stress: stomatal closure was the dominant limitation at mild and moderate drought, while metabolic impairment was dominant at severe drought. The physiological impairment at severe drought could also be detected from the relative lower water use efficiency and non-photochemical quenching to moderate water stress. Total biomass of well-watered plants was more than twice that at moderate water deficit and nearly ten times that at severe water deficit. In summary, V. negundo var. heterophylla had adaptation mechanism to water deficit even in the most serious condition, but different strategies were adopted. Seedlings invested more photosynthate to roots at mild and moderate drought while more photosynthate to leaves at severe drought. A nearly stagnant seedling growth and a sharp decline of total biomass were the survival strategy at severe water stress, which was not favorable to vegetation restoration. Water supply above 15% FC is recommended for the seedlings to vegetation restoration.  相似文献   

20.
Xing HT  Guo P  Xia XL  Yin WL 《Planta》2011,234(2):229-241
Water deficiency causes a dramatic reduction in crop production globally. Breeding crop varieties that are more efficient in their water use is one strategy to overcome this predicament. In this study, a member of the LRR-RLKs family, the Populus nigra × (Populus deltoides × Populus nigra) ERECTA (PdERECTA) gene was cloned. To study the biological functions of PdERECTA, transgenic Arabidopsis plants (35S:PdERECTA) that constitutively expressed the PdERECTA gene were constructed. Overexpression of PdERECTA resulted in early seedling establishment, longer primary roots, and larger leaf areas. Notably, transgenic Arabidopsis overexpressing PdERECTA resulted in enhanced long-term water use efficiency (WUEl), as estimated by the analysis of carbon isotopic discrimination. The WUEl results were supported by the physiological and anatomical results, which included improved photosynthetic rate, decreased transpiration rate, and stomatal density. The transgenic lines have significantly more dry-biomass as compared to the wild type. Since the overexpression of PdERECTA can strongly enhance the water use efficiency in transgenic Arabidopsis plants, PdERECTA could potentially be used in transgenic breeding to improve the water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号