首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Under low-input cropping systems, nitrogen (N) can be a limiting factor in plant growth and yield. Identifying genotypes that are more efficient at capturing limited N resources and the traits and mechanisms responsible for this ability is important. Root trait has a substantial influence on N acquisition from soils. Nevertheless, inconsistencies still exist as to the effect of low N on root length and its architecture in terms of lateral and axial roots. For maize, a crop utilizing heterosis, little is known about the relationship between parents and their crosses in the response of root architecture to N availability. Here 7 inbred maize lines and 21 of their crosses created by diallel mating were used to study the effect of N stress on root morphology as well as the relationship between the inbreds and their crosses. With large genotypic differences, low N generally suppresses shoot growth and increases the root to shoot ratio with or without increasing root biomass in maize. Maize plants responded to N deficiency by increasing total root length and altering root architecture by increasing the elongation of individual axial roots and enhancing lateral root growth, but with a reduction in the number of axial roots. Here, the inbreds showed weaker responses in root biomass and other root parameters than their crosses. Heterosis of root traits was significant at both N levels and was attributed to both the general combining ability (GCA) and special combining ability (SCA). Low N had substantial affects on the pattern of heterosis, GCA and SCA affects on root traits for each of the crosses suggesting that selection under N stress is necessary in generating low N-tolerant maize genotypes.  相似文献   

2.
潘佳  李荣  胡小文 《西北植物学报》2016,36(6):1190-1198
在盆栽条件下,研究了不同水分处理对红砂(Reaumuria soongorica)叶碳同位素组成、光合特性和分枝生长的影响,并进一步调查了自然条件下不同退化程度红砂草地的土壤含水量,分枝生长、叶碳同位素及其关系。结果表明:(1)在盆栽条件下,随土壤含水量的降低,红砂当年生分枝生物量、一级分枝长、二级分枝数及其叶片净光合速率、气孔导度和蒸腾速率均显著减小,而叶片碳同位素组成(δ~(13) C)和水分利用效率则随土壤含水量降低而显著增加;且叶片δ~(13) C与当年生分枝生物量、一级分枝长、二级分枝数、叶片净光合速率、气孔导度和蒸腾速率呈显著负相关关系。(2)在田间自然条件下,红砂叶片δ~(13) C与立地30~60cm及60~100cm土层的土壤含水量、单位冠幅面积生物量、单位冠幅面积分枝数呈显著负相关关系。研究认为,在盆栽和田间条件下,红砂叶片δ~(13) C是指示其生境水分状况的良好指标;红砂主要利用土壤的深层水分,其在土壤含水量相对较低的轻度退化区水分利用效率比土壤含水量相对较高的重度退化区更高。这一结论对于理解干旱生境中红砂的水分利用策略以及红砂草地的管理和恢复具有一定的指导意义。  相似文献   

3.
Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0–10, 10–20 and 20–30 cm). The mesh bags were collected after 12 months and we found that 590±70 kg ha–1 year–1 of pure mycelia was produced in spruce stands and 420±160 kg ha–1 year–1 in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20°C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8±0.9×103 kg ha–1 and in the mixed stands 5.8±1.1×103 kg ha–1 down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha–1 in spruce stands and 187 kg N ha–1 in mixed stands. The 13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The 13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The 15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.  相似文献   

4.
Pressure-dependent 13C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH3, CH2 and CH carbon shifts change on average by +0.23, −0.09 and −0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the γ-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual 13Cα shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas 13Cβ shifts retain significant dependence on local compression, making them less useful as structural restraints.  相似文献   

5.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

6.
Proline Metabolism and Transport in Maize Seedlings at Low Water Potential   总被引:7,自引:0,他引:7  
The growing zone of maize seedling primary roots accumulatesproline at low water potential. Endosperm removal and excisionof root tips rapidly decreased the proline pool and greatlyreduced proline accumulation in root tips at low water potential.Proline accumulation was not restored by exogenous amino acids.Labelling root tips with [14C]glutamate and [14C]proline showedthat the rate of proline utilization (oxidation and proteinsynthesis) exceeded the rate of biosynthesis by five-fold athigh and low water potentials. This explains the reduction inthe proline pool following root and endosperm excision and theinability to accumulate proline at low water potential. Theendosperm is therefore the source of the proline that accumulatesin the root tips of intact seedlings. Proline constituted 10% of the amino acids released from the endosperm. [14C]Prolinewas transported from the scutellum to other parts of the seedlingand reached the highest concentration in the root tip. Less[14C]proline was transported at low water potential but becauseof the lower rate of protein synthesis and oxidation, more accumulatedas proline in the root tip. Despite the low biosynthesis capacityof the roots, the extent of proline accumulation in relationto water potential is precisely controlled by transport andutilization rate.  相似文献   

7.
We compared the foliar 15N and 13C values of Pinus massoniana growing on soils with and without microbiotic crust to examine the influence of the microbiotic crust on N and water use in plants in deteriorated watersheds in southern China. At our study site, litterfall and undergrowth had been intensively removed for fuel and soil N concentration was extremely low. Microbiotic crust covered the lower slope within the watersheds and pine trees were taller here than on the middle and upper slopes, although the crust reduced the amount of rainfall that could penetrate the soil. The foliar 15N values were greater (closer to zero) in pine trees growing on soil covered with microbiotic crust on the lower slope than on the middle and upper slopes, which lacked the microbiotic crust. These data suggest that P.massoniana may depend on N fixed by the microbiotic crust on the lower slope, and on N carried by precipitation on the middle and upper slopes. The microbiotic crust did not influence foliar 13C, an index for water use efficiency, in P.massoniana. The fact that P.massoniana biomass was greater on the lower slope, which is less permeable to rainfall, suggests that P.massoniana growth may be limited by the amount of available N rather than by water. The microbiotic crust may improve plant productivity by increasing N availability, despite its negative effect on water availability.  相似文献   

8.
We studied the effects of H+-ATPase activator fusicoccin (FC) and its inhibitors, sodium orthovanadate (Na3VO4) and diethylstilbestrol (DES), on the rate of proton secretion by root regions located at various distances from the root tip, the rate of root growth, the length of the fully-elongated root cells, the sizes of growth zones, the relative growth rate of cells along the root length, and the number of fully-elongated cells in the root length increment. FC (10−6 M) stimulated proton secretion by root segments and enhanced root growth due to the greater length of fully-elongated cells. DES (10−4 M) suppressed proton secretion and retarded root growth, decreased the length of fully-elongated cells, inhibited cell division, and slowed down cell transition to elongation by prolonging the life-span of cells in the meristem. Na3VO4 (10−3 and 10−4 M) exerted similar effects. FC, DES, and orthovanadate did not affect the ratio of the relative rate of cell growth in the elongation zone to that in meristem.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 558–565.Original Russian Text Copyright © 2005 by Mesenko, Ivanov.  相似文献   

9.
13C discrimination between atmosphere and bulk leaf matter (Δ13Clb) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole‐plant TE (i.e. accumulated biomass/water transpired). Net CO2 assimilation rates (A) and stomatal conductance (gs) were recorded in parallel to: (1) 13C in leaf bulk material (δ13Clb) and in soluble sugars (δ13Css) and (2) 18O in leaf water and bulk leaf material. Genotypic means of δ13Clb and δ13Css were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/gs), and with whole‐plant TE. Finally, gs was positively correlated to 18O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ13Clb captures efficiently the genetic variability of whole‐plant TE in poplar. Nevertheless, scaling from leaf level to whole‐plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented.  相似文献   

10.
11.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

12.
Hydrolytic activities of the H+-ATPase were compared for plasma membrane fractions isolated from coleoptile cells of 3-, 4-, and 5-day-old etiolated maize seedlings. The membrane preparations obtained by differential centrifugation were additionally purified in the gradient of sucrose density and in the polyethylene glycol-dextran system. The highest level of ATP-hydrolyzing activity was observed in the plasmalemma fraction obtained from 4-day-old seedlings. The pattern of age-dependent changes in H+-ATPase activity of the plasma membranes was clearly different from the monotonic deceleration of coleoptile cell elongation in the period examined. It is supposed that changes in ATPase activity reflect different regulatory roles of this principal ion-transporting enzyme of the plasma membrane at the stage of cell elongation and at a later developmental stage when the coleoptile has completed its physiological function.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 566–572.Original Russian Text Copyright © 2005 by Rudashevskaya, Kirpichnikova, Shishova.  相似文献   

13.
14.
15.
The effects of osmotic stress on H+-ATPase and H+-PPase activities and the levels of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) were investigated using tonoplast vesicles isolated from the roots of wheat (Triticum aestivum L.) seedlings differing in drought-tolerance. The results showed that after polyethylene glycol (PEG) 6,000 (–0.55MPa) treatment for 7 days, seedling leaf relative water content (LRWC), relative dry weight increase rate (RDWIR) and root H+-ATPase and H+-PPase activities from the drought-sensitive cultivar Yangmai No. 9 decreased more markedly than those from the drought-tolerant cultivar Yumai No. 18. At the same time, the increase of the NCC-spermidine (NCC-Spd) and CC-putrescine (CC-Put) levels in root tonoplast vesicles from Yumai No. 18 was more obvious than that from Yangmai No. 9. Exogenous Spd treatment alleviated osmotic stress injury to Yangmai No. 9 seedlings, coupled with marked increases of tonoplast NCC-Spd levels and H+-ATPase and H+-PPase activities. Treatments with methylglyoxyl bis (guanyl hydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), and phenanthrolin, an inhibitor of transglutaminase (TGase), significantly inhibited the osmotically induced increases of NCC-Spd and CC-Put levels, respectively, in root tonoplast vesicles from Yumai No. 18 seedlings. Both MGBG and phenanthrolin treatments markedly promoted osmotically induced decreases of tonoplast H+-ATPase and H+-PPase activities and osmotic stress tolerance of seedlings of this cultivar. These results suggest that the NCC-Spd and CC-Put present in tonoplast vesicles isolated from wheat seedling roots might enhance the adaptation of seedlings to osmotic stress via maintenance of tonoplast H+-ATPase and H+-PPase activities.  相似文献   

16.
Knowledge of the interactive effects of water and nitrogen (N) on physio-chemical traits of maize (Zea mays L.) helps to optimize water and N management and improve productivity. A split-plot experiment was conducted with three soil water conditions (severe drought, moderate drought, and fully water supply referring to 45%–55%, 65%–75%, and 85%–95% field capacity, respectively) and four N application rates (N0, N150, N240, and N330 referring to 0, 150, 240, 330 kg N ha–1 respectively) under drip fertigation in 2014 and 2015 in the Huang-Huai-Hai Plain of China. The results indicated that drought stress inhibited physiological activity of plants (leaf relative water content, root bleeding sap, and net photosynthetic rate), resulting in low dry matter accumulation after silking, yield, and N uptake, whereas increased WUE and NUE. N application rates over than 150 kg ha–1 aggravated the inhibition of physiological activity under severe drought condition, while it was offset under moderate drought condition. High N application rates (N330) still revealed negative effects under moderate drought condition, as it did not consistently enhance plant physiological activity and significantly reduced N uptake as compared to the N240 treatment. With fully water supply, increasing N application rates synergistically enhanced physiological activity, promoted dry matter accumulation after silking, and increased yield, WUE, and N uptake. Although the N240 treatment reduced yield by 5.4% in average, it saved 27.3% N under full water supply condition as compared with N330 treatment. The results indicated that N regulated growth of maize in aspects of physiological traits, dry matter accumulation, and yield as well as water and N use was depended on soil water status. The appropriate N application rates for maize production was 150 kg ha–1 under moderate drought or 240 kg ha–1 under fully water supply under drip fertigation, and high N supply (>150 kg ha–1) should be avoided under severe drought condition.  相似文献   

17.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

18.
19.
Animals with high metabolic rates are believed to have high rates of carbon and nitrogen isotopic incorporation. We hypothesized that (1) chronic exposure to cold, and hence an increase in metabolic rate, would increase the rate of isotopic incorporation of both 13C and 15N into red blood cells; and (2) that the rate of isotopic incorporation into red blood cells would be allometrically related to body mass. Two groups of sparrows were chronically exposed to either 5 or 22°C and switched from a 13C-depleted C3-plant diet to a more 13C-enriched C4-plant one. We used respirometry to estimate the resting metabolic rate of birds exposed chronically to our two experimental temperatures. The allometric relationship between the rate of 13C incorporation into blood and body mass was determined from published data. The of birds at 5°C was 1.9 times higher than that of birds at 22°C. Chronic exposure to a low temperature did not have an effect on the rate of isotopic incorporation of 15N save for a very small effect on the incorporation of 13C. The isotopic incorporation rate of 13C was 1.5 times faster than that of 15N. The fractional rate of 13C incorporation into avian blood was allometrically related to body mass with an exponent similar to −1/4. We conclude that the relationship between metabolic rate and the rate of isotopic incorporation into an animal’s tissues is indirect. It is probably mediated by protein turnover and thus more complex than previous studies have assumed.  相似文献   

20.
The possibility of measuring the rates of light and dark CO2 assimilation using 13C carbonate was demonstrated on Lake Kichier (Marii El). The application of methods utilizing the stable 13C and the radioactive 14C isotopes resulted in comparable values of the rates of light and dark CO2 fixation. Due to its absolute environmental safety, the method with 13C mineral carbon can be recommended as an alternative to radioisotope methods for qualitative measurements of CO2 fixation rates in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号