首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collagen binding chaperone HSP47 interacts with procollagen in the endoplasmic reticulum and plays a crucial role in the biosynthesis of collagen. We recently demonstrated that typical collagen model peptides, (Pro-Pro-Gly)(n), possess sufficient structural information for interaction with HSP47 (Koide, T., Asada, S., and Nagata, K. (1999) J. Biol. Chem. 274, 34523-34526). Here we show that binding of (Gly-Pro-Pro)(n) peptides to HSP47 can be detected using the two-hybrid system in yeast if a trimerizing domain is fused to the C termini of the peptides. Some peptides interacted with HSP47 at a lowered assay temperature at 24 degrees C but not at 30 degrees C, indicating the importance of conformational change of the substrate peptides. To analyze the spectrum of HSP47 substrate sequences, we performed two-hybrid screening of collagen-like peptides in designed random peptide libraries using HSP47 as a bait. In selected peptides, the enrichment ratio calculated for each amino acid residue correlated strongly with the contribution of the residue to triple-helix stability independently determined using synthetic collagen model peptides. Taken together, our results suggest that HSP47 preferentially recognizes collagenous Gly-X-Y repeats in triple-helical conformation. We also demonstrated that screening of combinatorial peptide libraries is a powerful strategy to determine conformational requirements as well as the elucidation of binding motifs in primary structure.  相似文献   

2.
As a crucial molecular chaperone in collagen biosynthesis, Hsp47 interacts with the nascent form as well as the mature triple-helical form of procollagen. The location(s) of Hsp47 binding sites on the collagen molecule are, as yet, unknown. We have examined the substrate specificity of Hsp47 in vitro using well-characterized CNBr peptide fragments of type I and type II collagen along with radiolabeled, recombinant Hsp47. Interaction of these peptides with Hsp47 bound to collagen-coated microtiter wells showed several binding sites for Hsp47 along the length of the alpha1 and alpha2 chains of type I collagen and the alpha1 chain of type II collagen, with the N-terminal regions showing the strongest affinities. The latter observation was also supported by the results of a ligand-blot assay. Except for two peptides in the alpha2(I) chain, peptides that showed substantial binding to Hsp47 did so in their triple-helical and not random-coil form. Unlike earlier studies that used peptide models for collagen, the results obtained here on fragments of type I and type II collagen identify, for the first time, binding of Hsp47 to specific regions of the collagen molecule. They also point to additional structural requirements for Hsp47 binding besides the known preference for third-position Arg residues and the triple-helical conformation.  相似文献   

3.
Hsp47 (heat shock protein 47), a collagen-specific molecular chaperone, is essential for the maturation of various types of procollagens. Previous studies have suggested that Hsp47 may preferentially recognize the triple-helix form of procollagen rather than unfolded procollagen chains in the endoplasmic reticulum. However, the underlying mechanism has remained unclear because of limitations in the available methods for detecting in vitro and in vivo interactions between Hsp47 and collagen. In this study, we established novel methods for this purpose by adopting a time-resolved FRET technique in vitro and a bimolecular fluorescence complementation technique in vivo. Using these methods, we provide direct evidence that Hsp47 binds to collagen triple helices but not to the monomer form in vitro. We also demonstrate that Hsp47 binds a collagen model peptide in the trimer conformation in vivo. Hsp47 did not bind collagen peptides that had been modified to block their ability to form triple helices in vivo. These results conclusively indicate that Hsp47 recognizes the triple-helix form of procollagen in vitro and in vivo.  相似文献   

4.
5.
Solid-phase synthesis of triple-helical peptides, including native collagen III sequences, was started with a trimeric branch, based upon the lysine dipeptide [Fields, C. G., Mickelson, D. J., Drake, S. L., McCarthy, J. B., and Fields, G. B. (1993) J. Biol. Chem. 268, 14153-14160]. Branch synthesis was modified, using TentaGel R as resin, p-hydroxybenzyl alcohol (HMP) as linker, Dde as N(epsilon)-protective group, and HATU/HOAT as coupling reagent. Three homotrimeric sequences, each containing the Gly 606-Gly 618 portion of human type III collagen, were added to the amino functions of the branch. The final incorporation of GlyProHyp triplets, stabilizing the collagen III triple helix, was performed by using protected GlyProHyp tripeptides, each containing tert-butylated hydroxyproline [P(tBu)] instead of hydroxyproline (P). Among the protected tripeptides FmocP(tBu)PG, FmocPP(tBu)G, and FmocGPP(tBu), prepared manually on a chlorotrityl resin, incorporation of FmocPP(tBu)Gly was best suited for synthesis of large and stable peptides, such as PPG(8), containing 8 (PPG)(3) trimers (115 residues, 10 610 Da). The structures of five peptides, differing from each other by the type and number of the triplets incorporated, were verified by MALDI-TOF-MS. Their conformations and thermodynamic data were studied by circular dichroism and differential scanning calorimetry. Except for PPG(8), containing 8 (PPG)(3) trimers with hydroxyproline in the X position and adopting a polyproline II structure, all peptides were triple-helical in 0.1 M acetic acid and their thermal stabilities ranged from t(1/2) = 39. 4 to t(1/2) = 62.5 degrees C, depending on the identity and number of the triplets used. Similar values of the van't Hoff enthalpy, DeltaH(vH), derived from melting curves, and the calorimetric enthalpy, DeltaH(cal), obtained from heat capacity curves, indicate a cooperative ratio of CR = DeltaH(vH)/DeltaH(cal) = 1, establishing a two-state process for unfolding of THP(III) peptides. The independence of the transition temperatures t(1/2) on peptide concentration as well as equilibrium centrifugation data indicate monomolecular dimer(f) to dimer(u) (F(2) <--> U(2)) transitions and, in addition, bimolecular dimer(f) to monomer(u) transitions (F(2) <--> 2U). The dominance of the concentration-independent monomolecular reaction over the concentration-dependent bimolecular reaction makes thermal unfolding of THP(III) peptides appear to be monomolecular. If one designates the molecularity described by the term pseudomonomolecular, unfolding of the dimeric peptides PPG(6-8) follows a two-state, pseudomonomolecular reaction.  相似文献   

6.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

7.
The 18-residue fragment of bovine S-antigen, corresponding to amino acid positions 303-320, is highly immunogenic and is known to induce experimental autoimmune uveitis. The solution conformation of this immunogenic peptide, known as peptide M, was studied by Fourier-transform infrared spectroscopy and by circular dichroism. In the pH range between approximately 4 and 9.5, peptide M has a strong tendency to form macromolecular assemblies in which it adopts an intermolecular beta-sheet structure. The intermolecular beta-sheets are stabilized by ionic interactions ("salt bridges") between the carboxylate groups and basic residues of the neighboring peptide molecules. These interactions can be disrupted by neutralization of either acidic (pH range below 4) or basic residues (pH range above 9.5) or by elevated hydrostatic pressure. The secondary structure of the peptide under conditions favoring the monomeric state appears to be a mixture of unordered structure and beta-sheets. The present data are consistent with a recently proposed model [Sette, A., Buns, S., Colon, S., Smith, J. A., Miles, C., & Grey, H. M. (1987) Nature 328, 395-399], which assumes that certain immunogenic peptides adopt an extended beta-type conformation in which they are "sandwiched" between the major histocompatibility complex and the T-cell receptor.  相似文献   

8.
Heat-shock protein of 47 kDa (Hsp47) is a molecular chaperone that recognizes collagen triple helices in the endoplasmic reticulum (ER). Hsp47-knockout mouse embryos are deficient in the maturation of collagen types I and IV, and collagen triple helices formed in the absence of Hsp47 show increased susceptibility to protease digestion. We show here that the fibrils of type I collagen produced by Hsp47-/- cells are abnormally thin and frequently branched. Type I collagen was highly accumulated in the ER of Hsp47-/- cells, and its secretion rate was much slower than that of Hsp47+/+ cells, leading to accumulation of the insoluble aggregate of type I collagen within the cells. Transient expression of Hsp47 in the Hsp47-/- cells restored normal extracellular fibril formation and intracellular localization of type I collagen. Intriguingly, type I collagen with unprocessed N-terminal propeptide (N-propeptide) was secreted from Hsp47-/- cells and accumulated in the extracellular matrix. These results indicate that Hsp47 is required for correct folding and prevention of aggregation of type I collagen in the ER and that this function is indispensable for efficient secretion, processing, and fibril formation of collagen.  相似文献   

9.
Collagen is the most abundant protein in mammals and is widely used as a biomaterial for tissue engineering and drug delivery. We previously reported that dendrimers and linear polymers, modified with collagen model peptides (Pro‐Pro‐Gly)5, form a collagen‐like triple‐helical structure; however, its triple helicity needs improvement. In this study, a collagen‐mimic dendrimer modified with the longer collagen model peptides, (Pro‐Pro‐Gly)10, was synthesized and named PPG10‐den. Circular dichroism analysis shows that the efficiency of the triple helix formation in PPG10‐den was much improved over the original. The X‐ray diffraction analysis suggests that the higher order structure was similar to the collagen triple helix. The thermal stability of the triple helix in PPG10‐den was higher than in the PPG10 peptide itself and our previous collagen‐mimic polymers using (Pro‐Pro‐Gly)5. Interestingly, PPG10‐den also assembled at low temperatures. Self‐assembled structures with spherical and rod‐like shapes were observed by transmission electron microscopy. Furthermore, a hydrogel of PPG10‐den was successfully prepared which exhibited the sol‐gel transition around 45°C. Therefore, the collagen‐mimic dendrimer is a potential temperature‐dependent biomaterial. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 270–277, 2011.  相似文献   

10.
Studies from our laboratories demonstrated that synthetic peptides from the non-collagenous (NC-1) domain of the alpha3 (IV) chain of type IV collagen (COL IV) enhanced tumor cell adhesion (Han, J., Ohno, N., Monboisse, J. C., Pasco, S., Borel, J. P., and Kefalides, N. A. (1997) J. Biol. Chem. 272, 20395-20401). We have isolated the receptors for the alpha3(IV)185-203 peptide from melanoma and prostate tumor cells and identified them as CD47/integrin-associated protein and the integrin alpha(V)beta(3) (Shahan, T. A., Ziaie, Z., Pasco, S., Fawzi, A., Bellon, G., Monboisse, J. C., and Kefalides, N. A. (1999) Cancer Res. 59, 4584-4590). In the present study we have examined the effect of CD47 and the integrin alpha(V)beta(3) on in vitro tumor cell chemotaxis and Ca(2+)(i) modulation in response to COL IV, from the anterior lens capsule (ALC-COL IV) and peptides from its NC-1 domain. COL IV as well as the alpha3(IV) peptide promoted tumor cell chemotaxis with an immediate increase in intracellular [Ca(2+)]. Treating tumor cells with CD47 and integrin alpha(V)beta(3)-reactive antibodies reduced chemotaxis as well as the rise in [Ca(2+)](i) in response to ALC-COL IV or the alpha3(IV)185-203 peptide but not to Engelbreth-Holm-Swarm-COL IV or fibronectin. The alpha3(IV)185-203 synthetic peptide stimulated an increase in calcium from intracellular stores exclusively, whereas ALC-COL IV, Engelbreth-Holm-Swarm-COL IV, and fibronectin stimulated Ca(2+) flux from both internal and external stores. Furthermore, treatment of the cells with Ca(2+) chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraaceticacid- acetomethoxy ester inhibited chemotaxis toward both ALC-COL IV and the alpha3(IV)185-203 peptide. These data indicate that CD47 and integrin alpha(V)beta(3) regulate tumor cell chemotaxis in response to COL IV and the alpha3(IV)185-203 peptide through a Ca(2+)-dependent mechanism.  相似文献   

11.
Triple helix formation of procollagen after the assembly of three alpha-chains at the C-propeptide is a prerequisite for refined structures such as fibers and meshworks. Hsp47 is an ER-resident stress inducible glycoprotein that specifically and transiently binds to newly synthesized procollagens. However, the real function of Hsp47 in collagen biosynthesis has not been elucidated in vitro or in vivo. Here, we describe the establishment of Hsp47 knockout mice that are severely deficient in the mature, propeptide-processed form of alpha1(I) collagen and fibril structures in mesenchymal tissues. The molecular form of type IV collagen was also affected, and basement membranes were discontinuously disrupted in the homozygotes. The homozygous mice did not survive beyond 11.5 days postcoitus (dpc), and displayed abnormally orientated epithelial tissues and ruptured blood vessels. When triple helix formation of type I collagen secreted from cultured cells was monitored by protease digestion, the collagens of Hsp47+/+ and Hsp47+/- cells were resistant, but those of Hsp47-/- cells were sensitive. These results indicate for the first time that type I collagen is unable to form a rigid triple-helical structure without the assistance of molecular chaperone Hsp47, and that mice require Hsp47 for normal development.  相似文献   

12.
The unique folding of procollagens in the endoplasmic reticulum is achieved with the assistance of procollagen-specific molecular chaperones. Heat-shock protein 47 (HSP47) is an endoplasmic reticulum-resident chaperone that plays an essential role in normal procollagen folding, although its molecular function has not yet been clarified. Recent advances in studies on the binding specificity of HSP47 have revealed that Arg residues at Yaa positions in collagenous Gly-Xaa-Yaa repeats are critical for its interactions (Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) J. Biol. Chem. 277, 6178-6182; Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) J. Biol. Chem. 277, 35007-35012). In the present study, we further examined the client recognition mechanism of HSP47 by taking advantage of systems employing engineered collagen model peptides. First, in vitro binding studies using conformationally constrained collagen-like peptides revealed that HSP47 only recognized correctly folded triple helices and that the interaction with the corresponding single-chain polypeptides was negligible. Second, a binding study using heterotrimeric model clients for HSP47 demonstrated a minimal requirement for the number of Arg residues in the triple helix. Finally, a cross-linking study using photoreactive collagenous peptides provided information about the spatial orientation of an HSP47 molecule in the chaperone-collagen complex. The obtained results led to the development of a new model of HSP47-collagen complexes that differs completely from the previously proposed "flying capstan model" (Dafforn, T. R., Della, M., and Miller, A. D. (2001) J. Biol. Chem. 276, 49310-49319).  相似文献   

13.
Heat shock protein 47 (Hsp47) acts as a client-specific chaperone for collagen and plays a vital role in collagen maturation and the consequent embryonic development. In addition, this protein can be a potential target for the treatment of fibrosis. Despite its physiological and pathological importance, little is currently known about the collagen-binding mode of Hsp47 from a structural aspect. Here, we describe an NMR study that was conducted to identify the collagen-binding site of Hsp47. We used chicken Hsp47, which has higher solubility than its human counterpart, and applied a selective 15N-labeling method targeting its tryptophan and histidine residues. Spectral assignments were made based on site-directed mutagenesis of the individual residues. By inspecting the spectral changes that were observed upon interaction with a trimeric collagen peptide and the mutational data, we successfully mapped the collagen-binding site in the B/C β-barrel domain and a nearby loop in a 3D-homology model based upon a serpin fold. This conclusion was confirmed by mutational analysis. Our findings provide a molecular basis for the design of compounds that target the interaction between Hsp47 and procollagen as therapeutics for fibrotic diseases.  相似文献   

14.
Interactions of Hsp90 with histones and related peptides   总被引:4,自引:0,他引:4  
The 90 kDa heat shock protein (Hsp90) induces the condensation of the chromatin structure [Csermely, P., Kajtár, J., Hollósi, M., Oikarinen, J., and Somogyi, J. (1994) Biochem. Biophys. Res. Commun. 202, 1657-1663]. In our present studies we used surface plasmon resonance measurements to demonstrate that Hsp90 binds histones H1, H2A, H2B, H3 and H4 with high affinity having dissociation constants in the submicromolar range. Strong binding of the C-terminal peptide of histone H1 containing the SPKK-motif and a pentaeicosa-peptide including the Hsp90 bipartite nuclear localization signal sequence was also observed. However, a lysine/arginine-rich peptide of casein, and the lysine-rich platelet factor 4 did not display a significant interaction with Hsp90. Histones and positively charged peptides modulated the Hsp90-associated kinase activity. Interactions between Hsp90, histones, and high mobility group (HMG) protein-derived peptides raise the possibility of the involvement of Hsp90 in chromatin reorganization during steroid action, mitosis, or after cellular stress.  相似文献   

15.
Hsp47 is a molecular chaperone that specifically recognizes procollagen in the endoplasmic reticulum. Hsp47-null mouse embryos produce immature type I collagen and form discontinuous basement membranes. We established Hsp47-/- embryonic stem cell lines and examined formation of basement membrane and production of type IV collagen in embryoid bodies, a model for postimplantation egg-cylinder stage embryos. The visceral endodermal cell layers surrounding Hsp47-/- embryoid bodies were often disorganized, a result that suggested abnormal function of the basement membrane under the visceral endoderm. Rate of type IV collagen secretion by Hsp47-/- cells was fourfold lower than that of Hsp47+/+ cells. Furthermore, type IV collagen secreted from Hsp47-/- cells was much more sensitive to protease digestion than was type IV collagen secreted from Hsp47+/+ cells, which suggested insufficient or incorrect triple helix formation in type IV collagen in the absence of Hsp47. These results indicate for the first time that Hsp47 is required for the molecular maturation of type IV collagen and suggest that misfolded type IV collagen causes abnormal morphology of embryoid bodies.  相似文献   

16.
Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.  相似文献   

17.
The major heat shock protein (Hsp) chaperones Hsp70 and Hsp90 both bind the co-chaperone Hop (Hsp70/Hsp90 organizing protein), which coordinates Hsp actions in folding protein substrates. Hop contains three tetratricopeptide repeat (TPR) domains that have binding sites for the conserved EEVD C termini of Hsp70 and Hsp90. Crystallographic studies have shown that EEVD interacts with positively charged amino acids in Hop TPR-binding pockets (called carboxylate clamps), and point mutations of these carboxylate clamp positions can disrupt Hsp binding. In this report, we use circular dichroism to assess the effects of point mutations and Hsp70/Hsp90 peptide binding on Hop conformation. Our results show that Hop global conformation is destabilized by single point mutations in carboxylate clamp positions at pH 5, while the structure of individual TPR domains is unaffected. Binding of peptides corresponding to the C termini of Hsp70 and Hsp90 alters the global conformation of wild-type Hop, whereas peptide binding does not alter conformation of individual TPR domains. These results provide biophysical evidence that Hop-binding pockets are directly involved with domain:domain interactions, both influencing Hop global conformation and Hsp binding, and contributing to proper coordination of Hsp70 and Hsp90 interactions with protein substrates.  相似文献   

18.
Hsp47 is a heat stress protein that interacts with procollagen in the lumen of the endoplasmic reticulum, which is vital for collagen elaboration and embryonic viability. The precise actions of Hsp47 remain unclear, however. To evaluate the effects of Hsp47 on collagen production we infected human vascular smooth muscle cells (SMCs) with a retrovirus containing Hsp47 cDNA. SMCs overexpressing Hsp47 secreted type I procollagen faster than SMCs transduced with empty vector, yielding a greater accumulation of pro alpha1(I) collagen in the extracellular milieu. Interestingly, the amount of intracellular pro alpha1(I) collagen was also increased. This was associated with an unexpected increase in the rate of pro alpha1(I) collagen chain synthesis and 2.5-fold increase in pro alpha1(I) collagen mRNA expression, without a change in fibronectin expression. This amplification of procollagen expression, synthesis, and secretion by Hsp47 imparted SMCs with an enhanced capacity to elaborate a fibrillar collagen network. The effects of Hsp47 were qualitatively distinct from, and independent of, those of ascorbate and the combination of both factors yielded an even more intricate fibril network. Given the in vitro impact of altered Hsp47 expression on procollagen production, we sought evidence for interindividual variability in Hsp47 expression and identified a common, single nucleotide polymorphism in the Hsp47 gene promoter among African Americans that significantly reduced promoter activity. Together, these findings indicate a novel means by which type I collagen production is regulated by the endoplasmic reticulum constituent, Hsp47, and suggest a potential basis for inherent differences in collagen production within the population.  相似文献   

19.
Prior to secretion, procollagen molecules are correctly folded to triple helices in the endoplasmic reticulum (ER). HSP47 specifically associates with procollagen in the ER during its folding and/or modification processes and is thought to function as a collagen-specific molecular chaperone (Nagata, K. (1996) Trends Biochem. Sci. 21, 23-26). However, structural requirements for substrate recognition and regulation of the binding have not yet been elucidated. Here, we show that a typical collagen model sequence, (Pro-Pro-Gly)(n), possesses sufficient structural information required for recognition by HSP47. A structure-activity relationship study using synthetic analogs of (Pro-Pro-Gly)(n) has revealed the requirements in both chain length and primary structure for the interaction. The substrate recognition of HSP47 has also been shown to be similar but distinct from that of prolyl 4-hydroxylase, an ER resident enzyme. Further, it has shown that the interaction of HSP47 with the substrate peptides is abolished by prolyl 4-hydroxylation of the second Pro residues in Pro-Pro-Gly triplets and that the fully prolyl 4-hydroxylated peptide, (Pro-Hyp-Gly)(n), does not interact with HSP47. We thus have proposed a model in which HSP47 dissociates from procollagen during the process of prolyl 4-hydroxylation in the ER.  相似文献   

20.
HSP47 is an essential procollagen-specific molecular chaperone that resides in the endoplasmic reticulum of procollagen-producing cells. Recent advances have revealed that HSP47 recognizes the (Pro-Pro-Gly)(n) sequence but not (Pro-Hyp-Gly)(n) and that HSP47 recognizes the triple-helical conformation. In this study, to better understand the substrate recognition by HSP47, we synthesized various collagen model peptides and examined their interaction with HSP47 in vitro. We found that the Pro-Arg-Gly triplet forms an HSP47-binding site. The HSP47 binding was observed only when Arg residues were incorporated in the Yaa positions of the Xaa-Yaa-Gly triplets. Amino acids in the Xaa position did not largely affect the interaction. The recognition of the Arg residue by HSP47 was specific to its side-chain structure because replacement of the Arg residue by other basic amino acids decreased the affinity to HSP47. The significance of Arg residues in HSP47 binding was further confirmed by using residue-specific chemical modification of types I and III collagen. Our results demonstrate that Xaa-Arg-Gly sequences in the triple-helical procollagen molecule are dominant binding sites for HSP47 and enable us to predict HSP47-binding sites in homotrimeric procollagen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号