首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.  相似文献   

2.
The mechanism and machinery of hepatitis C virus (HCV) RNA replication are still poorly understood. In this study, we labeled de novo-synthesized viral RNA in situ with bromouridine triphosphate (BrUTP) in Huh7 cells expressing an HCV subgenomic replicon. By immunofluorescence staining using an anti-BrUTP antibody and confocal microscopy, we showed that the newly synthesized HCV RNA was localized to distinct speckle-like structures, which also contain all of the HCV nonstructural (NS) proteins. These speckles are distinct from lipid droplets and are separated from the endoplasmic reticulum (ER), where some HCV NS proteins also reside. Membrane flotation analysis demonstrated that almost all of the NS5A and part of the NS5B proteins and all of the viral RNA were present in membrane fractions which are resistant to treatment with 1% NP-40 at 4 degrees C. They were cofractionated with caveolin-2, a lipid-raft-associated intracellular membrane protein, in the presence or absence of the detergent. In contrast, the ER-resident proteins were detergent soluble. These properties suggest that the membranes on which HCV RNA replication occurs are lipid rafts recruited from the intracellular membranes. The protein synthesis inhibitors cycloheximide and puromycin did not inhibit viral RNA synthesis, indicating that HCV RNA replication does not require continuous protein synthesis. We suggest that HCV RNA synthesis occurs on a lipid raft membrane structure.  相似文献   

3.
HM Liu  H Aizaki  K Machida  JH Ou  MM Lai 《PloS one》2012,7(8):e43600
Hepatitis C virus (HCV) RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER) in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.  相似文献   

4.
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection.  相似文献   

5.
The hepatitis C virus (HCV) encodes a large polyprotein; therefore, all viral proteins are produced in equimolar amounts regardless of their function. The aim of our study was to determine the ratio of nonstructural proteins to RNA that is required for HCV RNA replication. We analyzed Huh-7 cells harboring full-length HCV genomes or subgenomic replicons and found in all cases a >1,000-fold excess of HCV proteins over positive- and negative-strand RNA. To examine whether all nonstructural protein copies are involved in RNA synthesis, we isolated active HCV replication complexes from replicon cells and examined them for their content of viral RNA and proteins before and after treatment with protease and/or nuclease. In vitro replicase activity, as well as almost the entire negative- and positive-strand RNA, was resistant to nuclease treatment, whereas <5% of the nonstructural proteins were protected from protease digest but accounted for the full in vitro replicase activity. In consequence, only a minor fraction of the HCV nonstructural proteins was actively involved in RNA synthesis at a given time point but, due to the high amounts present in replicon cells, still representing a huge excess compared to the viral RNA. Based on the comparison of nuclease-resistant viral RNA to protease-resistant viral proteins, we estimate that an active HCV replicase complex consists of one negative-strand RNA, two to ten positive-strand RNAs, and several hundred nonstructural protein copies, which might be required as structural components of the vesicular compartments that are the site of HCV replication.  相似文献   

6.
Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding activities of the C-terminal NS3 helicase domain (NS3hel). To determine whether NS3hel enhances the NS3 serine protease activity, we purified truncated and full-length NS3-4A complexes and examined their serine protease activities under a variety of salt and pH conditions. Our results indicate that the helicase domain enhances serine protease activity, just as the protease domain enhances helicase activity. Thus, the two enzymatic domains of NS3-4A are highly interdependent. This is the first time that such a complete interdependence has been demonstrated for a multifunctional, single chain enzyme. NS3-4A domain interdependence has important implications for function during the viral lifecycle as well as for the design of inhibitor screens that target the NS3-4A protease.  相似文献   

7.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

8.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

9.
The RNA helicase/protease NS3 plays a central role in the RNA replication of hepatitis C virus (HCV), a cytoplasmic RNA virus that represents a major worldwide health problem. NS3 is, therefore, an important drug target in the effort to combat HCV. Most work has focused on the protease, rather than the helicase, activities of the enzyme. In order to further characterize NS3 helicase activity, we evaluated individual stages of duplex unwinding by NS3 alone and in complex with cofactor NS4A. Despite a putative replicative role in RNA unwinding, we found that NS3 alone is a surprisingly poor helicase on RNA, but that RNA activity is promoted by cofactor NS4A. In contrast, NS3 alone is a highly processive helicase on DNA. Phylogenetic analysis suggests that this robust DNA helicase activity is not vestigial and may have specifically evolved in HCV. Given that HCV has no replicative DNA intermediate, these findings suggest that NS3 may have the capacity to affect host DNA.  相似文献   

10.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

11.
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.  相似文献   

12.
The hepatitis C virus (HCV) non-structural protein 3 (NS3) is a multifunctional enzyme with protease and helicase activities. It is essential for HCV proliferation and is therefore a target for anti-HCV drugs. Previously, we obtained RNA aptamers that inhibit either the protease or helicase activity of NS3. During the present study, these aptamers were used to create advanced dual-functional (ADD) aptamers that were potentially more effective inhibitors of NS3 activity. The structural domain of the helicase aptamer, #5Delta, was conjugated via an oligo(U) tract to the 3'-end of the dual functional aptamer NEO-III-14U or the protease aptamer G9-II. The spacer length was optimized to obtain two ADD aptamers, NEO-35-s41 and G925-s50; both were more effective inhibitors of NS3 protease/helicase activity in vitro, especially the helicase, with a four- to five-fold increase in inhibition compared with #5 and NEO-III-14U. Furthermore, G925-s50 effectively inhibited NS3 protease activity in living cells and HCV replication in vitro. Overall, we have demonstrated rational RNA aptamer design based on features of both aptamer and target molecules, as well as successfully combining aptamer function and increasing NS3 inhibition.  相似文献   

13.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

14.
The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific β-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the β-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.  相似文献   

15.
16.
Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses. To identify the cellular factors involved in HCV replication, we searched for cellular proteins that interact with the NS5b protein. HnRNP A1 and septin 6 proteins were identified by coimmunoprecipitation and yeast two-hybrid screening, respectively. Interestingly, septin 6 protein also interacts with hnRNP A1. Moreover, hnRNP A1 interacts with the 5'-nontranslated region (5' NTR) and the 3' NTR of HCV RNA containing the cis-acting elements required for replication. Knockdown of hnRNP A1 and overexpression of C-terminally truncated hnRNP A1 reduced HCV replication. In addition, knockdown of septin 6 and overexpression of N-terminally truncated septin 6 inhibited HCV replication. These results indicate that the host proteins hnRNP A1 and septin 6 play important roles in the replication of HCV through RNA-protein and protein-protein interactions.  相似文献   

17.
Mutations were introduced into the NS3 helicase region of a hepatitis C virus (HCV) Con1 subgenomic replicon to ascertain the role of the helicase in viral replication. One new replicon lacked two-thirds of the NS3 helicase (Deltahel), and six others contained one of the following six amino acid substitutions in NS3: R393A, F438A, T450I, E493K, W501A, and W501F. It has been previously reported that purified R393A, F438A, and W501A HCV helicase proteins do not unwind RNA but unwind DNA, bind RNA, and hydrolyze ATP. On the other hand, previous data suggest that a W501F protein retains most of its unwinding abilities and that purified T450I and E493K HCV helicase proteins have enhanced unwinding abilities. In a hepatoma cell line that has been cured of HCV replicons using interferon, the T450I and W501F replicons synthesized both negative-sense and positive-sense viral RNA and formed colonies after selection with similar efficiencies as the parent replicon. However, the Deltahel, R393A, F438A, and W501A replicons encoded and processed an HCV polyprotein but did not synthesize additional viral RNA or form colonies. Surprisingly the same phenotype was seen for the E493K replicon. The inability of the E493K replicon to replicate might point to a role of pH in viral replication because a previous analysis has shown that, unlike the wild-type NS3 protein, the helicase activity of an E493K protein is not sensitive to pH changes. These results demonstrate that the RNA-unwinding activity of the HCV NS3 helicase is needed for RNA replication.  相似文献   

18.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

19.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号