首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
X Y Fu  H Ge    J L Manley 《The EMBO journal》1988,7(3):809-817
We have studied the role in pre-mRNA splicing of the nucleotide sequence preceding the SV40 early region 3' splice site. Somewhat surprisingly, neither the pyrimidine at the highly conserved -3 position, nor the polypyrimidine stretch that extends from -5 to -15, relative to the 3' splice site, were found to be required for efficient splicing. Mutations that delete this region or create polypurine insertions at position -2 had no significant effects on the efficiency of SV40 early pre-mRNA splicing in vivo or in vitro. Interestingly, however, the pyrimidine content of this region had substantial effects on the alternative splicing pattern of this pre-mRNA in vivo. Mutations that increased the number of pyrimidine residues resulted in more efficient utilization of the large T antigen mRNA 5' splice site relative to the small t 5' splice site, while mutations that increased the purine content enhanced small t mRNA splicing. A possible molecular mechanism for these findings, as well as a model that proposes a role for the polypyrimidine stretch in alternative splicing, are discussed.  相似文献   

3.
We have generated several deletions within the intron of a yeast actin gene construct which have lead to different splicing efficiencies as measured by Northern blot (RNA blot) and primer extension analyses. Our data especially demonstrate that a minimum distance from the 5' splice site to the internal branch acceptor site is required for accurate and efficient splicing. In a construct in which splicing was completely abolished, splicing could be restored by expanding the distance from the 5' splice site to the internal branch acceptor site with heterologous sequences. Alternative splicing, i.e., exon skipping and the use of a cryptic 5' splice site, was observed when the mRNA precursor was derived from a tandem repeat of a truncated intron with flanking exon sequences.  相似文献   

4.
5.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

6.
While it is known that several trans -acting splicing factors are highly conserved between Schizosaccharomyces pombe and mammals, the roles of cis -acting signals have received comparatively little attention. In Saccharomyces cerevisiae, sequences downstream from the branch point are not required prior to the first transesterification reaction, whereas in mammals the polypyrimidine tract and, in some introns, the 3' AG dinucleotide are critical for initial recognition of an intron. We have investigated the contribution of these two sequence elements to splicing in S.pombe. To determine the stage at which the polypyrimidine tract functions, we analyzed the second intron of the cdc2 gene (cdc 2-Int2), in which pyrimidines span the entire interval between the branch point and 3' splice site. Our data indicate that substitution of a polypurine tract results in accumulation of linear pre-mRNA, while expanding the polypyrimidine tract enhances splicing efficiency, as in mammals. To examine the role of the AG dinucleotide in cdc 2-Int2 splicing, we mutated the 3' splice junction in both the wild-type and pyrimidine tract variant RNAs. These changes block the first transesterification reaction, as in a subset of mammalian introns. However, in contrast to the situation in mammals, we were unable to rescue the first step of splicing in a 3' splice site mutant by expanding the polypyrimidine tract. Mutating the terminal G in the third intron of the nda 3 gene (nda 3-Int3) also blocks the first transesterification reaction, suggesting that early recognition of the 3' splice site is a general property of fission yeast introns. Counter to earlier work with an artificial intron, it is not possible to restore the first step of splicing in cdc 2-Int2 and nda 3-Int3 3' splice site mutants by introducing compensatory changes in U1 snRNA. These results highlight the diversity and probable redundancy of mechanisms for identifying the 3' ends of introns.  相似文献   

7.
8.
The spliced leader RNAs of both trypanosomes and nematodes can form similar secondary structures where the trans-splice donor site is involved in intramolecular base pairing with the spliced leader sequence. It has been proposed that this base pairing could serve to activate autonomously the SL RNA splice donor site. Here, we have examined exon requirements for trans-splicing in a nematode cell free system. Complete disruption of secondary structure interactions at and around the trans-splice donor site did not affect the ability of the SL RNA to function in trans-splicing. In addition, the highly conserved 22 nt sequence could be productively replaced by artificial exons ranging in size from 2 to 246 nucleotides. These results reinforce the view that the 'intron' portion of the SL RNA functions as an independent Sm snRNP whose role is to deliver exon sequences to the trans-spliceosome.  相似文献   

9.
Small deletions of 6, 7, and 12 nucleotides introduced between the 5' splice site and the internal branch acceptor site of the first intron of the yeast MATa1 gene completely abolish accurate splicing in vitro in these constructs. Splicing only occurs at an alternative 5' splice site which was found in the first exon of the MATa1 gene and which is used both in vivo and in vitro. The splicing defect cannot be cured by expanding the distance from the branch point to the 3' splice site. If the alternative 5' splice site is deleted as well in these constructs, neither spliced products nor spliceosomes are formed. Our findings especially lead to the conclusion that a minimum distance between the 5' splice site and the internal branch acceptor site of the intron is required for the formation of splicing complexes and for accurate splicing.  相似文献   

10.
11.
A long (147 base pairs), natural A.T rich polypyrimidine/polypurine tract has been found 55 base pairs downstream of a chicken embryonic myosin heavy chain (MHC) gene. Analysis at the nucleotide level of nicks induced by S1 and Neurospora crassa nucleases indicate that this long interrupted polypyrimidine/polypurine tract exists in an alternate DNA structure in vitro at pH 4.5 and pH 7.5 in both supercoiled and linear plasmid DNA. The polypyrimidine/polypurine tract induces this alternate structure upon at least 200 base pairs of its 5' flanking DNA, and thus extends into the 3' coding and non-coding regions of the neighboring MHC gene. The different nicking patterns induced by the nucleases S1 and N. crassa on each strand of this alternate structure suggests that the polypyrimidine/polypurine tract may form heteronomous DNA. When this long polypyrimidine/polypurine tract is present in a supercoiled plasmid at low pH, a new and as yet undefined S1 hypersensitive DNA alteration was detected near the center of this tract.  相似文献   

12.
Trans-splicing requires that 5' and 3' splice sites be independently recognized. Here, we have used mutational analyses and a sensitive nuclease protection assay to determine the mechanism of trans-3' splice site recognition in vitro. Efficient recognition of the 3' splice site is dependent upon both the sequence of the 3' splice site itself and enhancer elements located in the 3' exon. We show that the presence of three distinct classes of enhancers results in increased binding of U2 snRNP to the branchpoint region. Several lines of evidence strongly suggest that the increased binding of U2 snRNP is mediated by U2AF. These results expand the roles of enhancers in constitutive splicing and provide direct support for the recruitment model of enhancer function.  相似文献   

13.
14.
Zein genes, the genes coding for the zein storage proteins of maize, have a unique gene structure where at least two promoters lie upstream of the coding region. Between the P1 promoter (900 base pairs upstream of the coding region) and the translation initiation AUG codon are 18 short reading frames. A discrepancy between the signals obtained by S1-mapping and primer extension and the DNA sequence in the region of one of these signals suggests the presence of a 3' splice site lying 40 nucleotides upstream of the coding region. A splicing event removing all of the short reading frames from the mRNA transcribed from the P1 promoter would bring this mRNA into a translatable form. Further evidence for a functional 3' splice site has been obtained from sequencing of primer extension products and in vitro splicing of a hybrid intron in the HeLa cell in vitro splicing system.  相似文献   

15.
16.
It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site.  相似文献   

17.
S Wu  M R Green 《The EMBO journal》1997,16(14):4421-4432
Accurate splicing of precursor mRNAs (pre-mRNAs) requires recognition of the 5' and 3' splice sites at the intron boundaries. Interactions between several splicing factors and the 5' splice site, which occur prior to the first step of splicing, have been well described. In contrast, recognition of the 3' splice site, which is cleaved during the second catalytic step, is poorly understood, particularly in higher eukaryotes. Here, using site-specific photo-crosslinking, we find that the conserved AG dinucleotide at the 3' splice site is contacted specifically by a 70 kDa polypeptide (p70). The p70-3' splice site crosslink has kinetics and biochemical requirements similar to those of splicing, was detected only in the mature spliceosome and occurs subsequent to the first step. Thus, p70 has all the properties expected of a factor that functionally interacts with the 3' splice site during the second step of splicing. Using antisera to various known splicing factors, we find that p70 corresponds to a previously reported 69 kDa protein of unknown function associated with the Sm core domain of spliceosomal small nuclear ribonucleoproteins.  相似文献   

18.
We have developed a splicing assay system with an immobilized pre-mRNA to study the mechanism of the splicing reaction after spliceosome assembly. Using this system, we have found that the second step of the splicing reaction could be dissected into two stages. After the 5' splice site reaction, at least two factors interact with the pre-formed spliceosome containing intermediate molecules in an ATP-independent manner to convert the spliceosome into a form competent for the 3' splice site reaction. Then, the 3' splice site reaction occurs on this spliceosome, if ATP is supplied to the reaction mixture. We have also investigated the dynamic state of the 3' splice site region in the spliceosomes during the splicing reaction by probing with RNase H sensitivity. Prior to the 5' splice site reaction, the 3' splice site region was protected from RNase H attack. The region became sensitive immediately after the 5' splice site reaction, and subsequently became resistant again as the spliceosome competent for the 3' splice site reaction was formed. These results suggest that the interaction of the 3' splice site region with some spliceosome components changes significantly during the splicing reaction.  相似文献   

19.
20.
In mammalian intron splicing, the mechanism by which the 3' splice site AG is accurately and efficiently identified has remained unresolved. We have previously proposed that the 3' splice site in mammalian introns is located by a scanning mechanism for the first AG downstream of the branch point-polypyrimidine tract. We now present experiments that lend further support to this model while identifying conditions under which competition can occur between adjacent AGs. The data show that the 3' splice site is identified as the first AG downstream from the branch point by a mechanism that has all the characteristics expected of a 5'-to-3' scanning process that starts from the branch point rather than the pyrimidine tract. Failure to recognize the proximal AG may arise, however, from extreme proximity to the branch point or sequestration within a hairpin. Once an AG has been encountered, the spliceosome can still see a limited stretch of downstream RNA within which an AG more competitive than the proximal one may be selected. Proximity to the branch point is a major determinant of competition, although steric effects render an AG less competitive in close proximity (approximately 12 nucleotides). In addition, the nucleotide preceding the AG has a striking influence upon competition between closely spaced AGs. The order of competitiveness, CAG congruent to UAG > AAG > GAG, is similar to the nucleotide preference at this position in wild-type 3' splice sites. Thus, 3' splice site selection displays properties of both a scanning process and competition between AGs based on immediate sequence context. This refined scanning model, incorporating elements of competition, is the simplest interpretation that is consistent with all of the available data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号