首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
X Y Fu  H Ge    J L Manley 《The EMBO journal》1988,7(3):809-817
We have studied the role in pre-mRNA splicing of the nucleotide sequence preceding the SV40 early region 3' splice site. Somewhat surprisingly, neither the pyrimidine at the highly conserved -3 position, nor the polypyrimidine stretch that extends from -5 to -15, relative to the 3' splice site, were found to be required for efficient splicing. Mutations that delete this region or create polypurine insertions at position -2 had no significant effects on the efficiency of SV40 early pre-mRNA splicing in vivo or in vitro. Interestingly, however, the pyrimidine content of this region had substantial effects on the alternative splicing pattern of this pre-mRNA in vivo. Mutations that increased the number of pyrimidine residues resulted in more efficient utilization of the large T antigen mRNA 5' splice site relative to the small t 5' splice site, while mutations that increased the purine content enhanced small t mRNA splicing. A possible molecular mechanism for these findings, as well as a model that proposes a role for the polypyrimidine stretch in alternative splicing, are discussed.  相似文献   

3.
V Heinrichs  B S Baker 《The EMBO journal》1995,14(16):3987-4000
The SR proteins represent a family of splicing factors several of which have been implicated in the regulation of sex-specific alternative splicing of doublesex (dsx) pre-mRNA in Drosophila. The dsx gene is involved in Drosophila sex determination. We have identified two RNA target sequence motifs recognized by the SR protein RBP1 from Drosophila using an in vitro selection approach. Several copies of these RBP1 target sequences were found within two regions of the dsx pre-mRNA which are important for the regulation of dsx alternative splicing, the repeat region and the purine-rich polypyrimidine tract of the regulated female-specific 3' splice site. We show that RBP1 target sequences within the dsx repeat region are required for the efficient splicing of dsx pre-mRNA. Moreover, our studies reveal that RBP1 contributes to the activation of female-specific dsx splicing in vivo by recognizing the RBP1 target sequences within the purine-rich polypyrimidine tract of the female-specific 3' splice site.  相似文献   

4.
Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context.  相似文献   

5.
While it is known that several trans -acting splicing factors are highly conserved between Schizosaccharomyces pombe and mammals, the roles of cis -acting signals have received comparatively little attention. In Saccharomyces cerevisiae, sequences downstream from the branch point are not required prior to the first transesterification reaction, whereas in mammals the polypyrimidine tract and, in some introns, the 3' AG dinucleotide are critical for initial recognition of an intron. We have investigated the contribution of these two sequence elements to splicing in S.pombe. To determine the stage at which the polypyrimidine tract functions, we analyzed the second intron of the cdc2 gene (cdc 2-Int2), in which pyrimidines span the entire interval between the branch point and 3' splice site. Our data indicate that substitution of a polypurine tract results in accumulation of linear pre-mRNA, while expanding the polypyrimidine tract enhances splicing efficiency, as in mammals. To examine the role of the AG dinucleotide in cdc 2-Int2 splicing, we mutated the 3' splice junction in both the wild-type and pyrimidine tract variant RNAs. These changes block the first transesterification reaction, as in a subset of mammalian introns. However, in contrast to the situation in mammals, we were unable to rescue the first step of splicing in a 3' splice site mutant by expanding the polypyrimidine tract. Mutating the terminal G in the third intron of the nda 3 gene (nda 3-Int3) also blocks the first transesterification reaction, suggesting that early recognition of the 3' splice site is a general property of fission yeast introns. Counter to earlier work with an artificial intron, it is not possible to restore the first step of splicing in cdc 2-Int2 and nda 3-Int3 3' splice site mutants by introducing compensatory changes in U1 snRNA. These results highlight the diversity and probable redundancy of mechanisms for identifying the 3' ends of introns.  相似文献   

6.
7.
The branchpoint sequence and associated polypyrimidine tract are firmly established splicing signals in vertebrates. In plants, however, these signals have not been characterized in detail. The potato invertase mini-exon 2 (9 nt) requires a branchpoint sequence positioned around 50 nt upstream of the 5' splice site of the neighboring intron and a U11 element found adjacent to the branchpoint in the upstream intron (Simpson et al., RNA, 2000, 6:422-433). Utilizing the sensitivity of this plant splicing system, these elements have been characterized by systematic mutation and analysis of the effect on inclusion of the mini-exon. Mutation of the branchpoint sequence in all possible positions demonstrated that branchpoints matching the consensus, CURAY, were most efficient at supporting splicing. Branchpoint sequences that differed from this consensus were still able to permit mini-exon inclusion but at greatly reduced levels. Mutation of the downstream U11 element suggested that it functioned as a polypyrimidine tract rather than a UA-rich element, common to plant introns. The minimum sequence requirement of the polypyrimidine tract for efficient splicing was two closely positioned groups of uridines 3-4 nt long (<6 nt apart) that, within the context of the mini-exon system, required being close (<14 nt) to the branchpoint sequence. The functional characterization of the branchpoint sequence and polypyrimidine tract defines these sequences in plants for the first time, and firmly establishes polypyrimidine tracts as important signals in splicing of at least some plant introns.  相似文献   

8.
Incubation in HeLa nuclear extract of a 32P-labeled 61 nucleotide-long RNA corresponding to the lariat branch site/polypyrimidine tract/3' splice site of the first intron of human beta-globin pre-mRNA led to the crosslinking of a single protein of approximately 62,000 mol. wt. (p62). p62 corresponds to a polypyrimidine tract-binding protein recently described by Garcia-Blanco et al. (Genes & Dev. 3: 1874-1886, 1989). Crosslinking of p62 to the 61 nt RNA was highly sequence specific. No p62 crosslinking was observed with a 60 nt pGEM vector RNA, a 63 nt RNA antisense to the 61-mer or a 72 nt U2 RNA sequence. p62 crosslinking to the 61 nt RNA was competed by unlabeled 61 nt RNA, by beta-globin pre-mRNA containing intron 1, and by poly(U) and poly(C), but was competed to a lesser extent or not at all by pGEM RNA, a beta-globin RNA lacking intron 1, or poly(A). Experiments with mutated RNAs revealed that neither the lariat branch site adenosine nor the 3' splice site were required for p62 crosslinking to polypyrimidine tract-containing RNA. Elimination of the polypyrimidine tract reduced p62 crosslinking, as did mutation of a polypyrimidine tract UU dinucleotide to GA. However, replacement of a pyrimidine-rich tract immediately adjacent (3') to the lariat branch site with a 57% A + G pGEM vector RNA sequence also significantly reduced p62 crosslinking, indicating the involvement of both this pyrimidine-rich region and the classical polypyrimidine tract adjacent to the 3' splice site. The sites of protein interaction were further defined by RNase H protection experiments, the results of which confirmed the patterns of p62 crosslinking to mutant RNAs. p62 crosslinking was efficiently competed by a DNA oligonucleotide having the same sequence as the 61 nt RNA, showing that p62 requires neither ribose 2' OH groups nor uracil bases for its interaction with the polypyrimidine tract. p62 was not crosslinked to double-stranded 61 nt RNA. Q-Sepharose chromatography of HeLa nuclear extract yielded an unbound fraction (QU) in which p62 was the only polypyrimidine tract-crosslinkable protein and a bound fraction (QB) in which, surprisingly, several non-p62 proteins were crosslinkable to the polypyrimidine tract RNA. Yet, when the two Q-Sepharose fractions were combined, p62 strongly out-competed the otherwise-crosslinkable QB proteins for polypyrimidine tract RNA crosslinking. This indicates that p62 may have the highest affinity and/or crosslinking efficiency for the intron polypyrimidine tract of any HeLa nuclear protein.  相似文献   

9.
Z M Zheng  P He    C C Baker 《Journal of virology》1996,70(7):4691-4699
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. However, one 3' splice site, located at nucleotide (nt) 3225, is used for the processing of most BPV-1 pre-mRNAs in BPV-1-transformed C127 cells and at early to intermediate times in productively infected warts. At late stages of the viral life cycle, an alternative 3' splice site at nt 3605 is used for the processing of the late pre-mRNA. In this study, we used in vitro splicing in HeLa cell nuclear extracts to identify cis elements which regulate BPV-1 3' splice site selection. Two purine-rich exonic splicing enhancers were identified downstream of nt 3225. These sequences, designated SE1 (nt 3256 to 3305) and SE2 (nt 3477 to 3526), were shown to strongly stimulate the splicing of a chimeric Drosophila doublesex pre-mRNA, which contains a weak 3' splice site. A BPV-1 late pre-mRNA containing the nt 3225 3' splice site but lacking both SE1 and SE2 was spliced poorly, indicating that this 3' splice site is inherently weak. Analysis of the 3' splice site suggested that this feature is due to both a nonconsensus branch point sequence and a suboptimal polypyrimidine tract. Addition of SE1 to the late pre-mRNA dramatically stimulated splicing, indicating that SE1 also functions as an exonic splicing enhancer in its normal context. However, a late pre-mRNA containing both SE1 and SE2 as well as the sequence in between was spliced inefficiently. Further mapping studies demonstrated that a 48-nt pyrimidine-rich region immediately downstream of SE1 was responsible for this suppression of splicing. Thus, these data suggest that selection of the BPV-1 nt 3225 3' splice site is regulated by both positive and negative exonic sequences.  相似文献   

10.

Background  

While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment.  相似文献   

11.
12.
13.
14.
15.
The neural cell-specific N1 exon of the c-src pre-mRNA is both negatively regulated in nonneural cells and positively regulated in neurons. We previously identified conserved intronic elements flanking N1 that direct the repression of N1 splicing in a nonneural HeLa cell extract. The upstream repressor elements are located within the polypyrimidine tract of the N1 exon 3' splice site. A short RNA containing this 3' splice site sequence can sequester trans-acting factors in the HeLa extract to allow splicing of N1. We now show that these upstream repressor elements specifically interact with the polypyrimidine tract binding protein (PTB). Mutations in the polypyrimidine tract reduce both PTB binding and the ability of the competitor RNA to derepress splicing. Moreover, purified PTB protein restores the repression of N1 splicing in an extract derepressed by a competitor RNA. In this system, the PTB protein is acting across the N1 exon to regulate the splicing of N1 to the downstream exon 4. This mechanism is in contrast to other cases of splicing regulation by PTB, in which the protein represses the splice site to which it binds.  相似文献   

16.
The molecular basis of the skipping of constitutive exons in many messenger RNAs is not fully understood. A well-studied example is exon 9 of the human cystic fibrosis transmembrane conductance regulator gene (CFTR), in which an abbreviated polypyrimidine tract between the branch point A and the 3' splice site is associated with increased exon skipping and disease. However, many exons, both in CFTR and in other genes and have short polypyrimidine tracts in their 3' splice sites, yet they are not skipped. Inspection of the 5' splice sites immediately up- and downstream of exon 9 revealed deviations from consensus sequence, so we hypothesized that this exon may be inherently vulnerable to skipping. To test this idea, we constructed a CFTR minigene and replicated exon 9 skipping associated with the length of the polypyrimidine tract upstream of exon 9. We then mutated the flanking 5' splice sites and determined the effect on exon skipping. Conversion of the upstream 5' splice site to consensus by replacing a pyrimidine at position +3 with a purine resulted in increased exon skipping. In contrast, conversion of the downstream 5' splice site to consensus by insertion of an adenine at position +4 resulted in a substantial reduction in exon 9 skipping, regardless of whether the upstream 5' splice site was consensus or not. These results suggested that the native downstream 5' splice site plays an important role in CFTR exon 9 skipping, a hypothesis that was supported by data from sheep and mouse genomes. Although CFTR exon 9 in sheep is preceded by a long polypyrimidine tract (Y(14)), it skips exon 9 in vivo and has a nonconsensus downstream 5' splice site identical to that in humans. On the other hand, CFTR exon 9 in mice is preceded by a short polypyrimidine tract (Y(5)) but is not skipped in vivo. Its downstream 5' splice site differs from that in humans by a 2-nt insertion, which, when introduced into the human CFTR minigene, abolished exon 9 skipping. Taken together, these observations place renewed emphasis on deviations at 5' splice sites in nucleotides other than the invariant GT, particularly when such changes are found in conjunction with other altered splicing sequences, such as a shortened polypyrimidine tract. Thus, careful inspection of entire 5' splice sites may identify constitutive exons that are vulnerable to skipping.  相似文献   

17.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

18.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

19.
Polyadenylation (PA) is the process by which the 3' ends of most mammalian mRNAs are formed. In nature, PA is highly coordinated, or coupled, with splicing. In mammalian systems, the most compelling mechanistic model for coupling arises from data supporting exon definition (2, 34, 37). We have examined the roles of individual functional components of splicing and PA signals in the coupling process by using an in vitro splicing and PA reaction with a synthetic pre-mRNA substrate containing an adenovirus splicing cassette and the simian virus 40 late PA signal. The effects of individually mutating splicing elements and PA elements in this substrate were determined. We found that mutation of the polypyrimidine tract and the 3' splice site significantly reduced PA efficiency and that mutation of the AAUAAA and the downstream elements of the PA signal decreased splicing efficiency, suggesting that these elements are the most significant for the coupling of splicing and PA. Although mutation of the upstream elements (USEs) of the PA signal dramatically decreased PA, splicing was only modestly affected, suggesting that USEs modestly affect coupling. Mutation of the 5' splice site in the presence of a viable polypyrimidine tract and the 3' splice site had no effect on PA, suggesting no effect of this element on coupling. However, our data also suggest that a site for U1 snRNP binding (e.g., a 5' splice site) within the last exon can negatively effect both PA and splicing; hence, a 5' splice site-like sequence in this position appears to be a modulator of coupling. In addition, we show that the RNA-protein complex formed to define an exon may inhibit processing if the definition of an adjacent exon fails. This finding indicates a mechanism for monitoring the appropriate definition of exons and for allowing only pre-mRNAs with successfully defined exons to be processed.  相似文献   

20.
During an adenovirus infection the expression of mRNA from late region L1 is temporally regulated at the level of alternative 3' splice site selection to produce two major mRNAs encoding the 52,55K and IIIa polypeptides. The proximal 3' splice site (52,55K) is used at all times of the infectious cycle whereas the distal site (IIIa) is used exclusively late after infection. We show that a single A branch nucleotide located at position -23 is used in 52,55K splicing and that two A's located at positions -21 and -22 are used in IIIa splicing. Both 3' splice sites were active in vitro in nuclear extracts prepared from uninfected HeLa cells. However, the efficiency of IIIa splicing was only approximately 10% of 52,55K splicing. This difference in splice site activity correlated with a reduced affinity of the IIIa, relative to the 52,55K, 3' splice site for polypyrimidine tract binding proteins. Reversing the order of 3' splice sites on a tandem pre-mRNA resulted in an almost exclusive IIIa splicing indicating that the order of 3' splice site presentation is important for the outcome of alternative L1 splicing. Based on our results we suggest a cis competition model where the two 3' splice sites compete for a common RNA splicing factor(s). This may represent an important mechanism by which L1 alternative splicing is regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号