首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both temporal and spatial scales are important in the evaluation of population dynamics, but the latter often receives less attention in demographic analyses. We used a 5-year demographic data set for a long-lived geophyte, Calochortus lyallii, to investigate the pattern and components of spatial variation at two scales (population and microsite). We found that neither the projected population structure nor asymptotic population growth rate (λ) varied greatly across either scale, although the underlying contributors to the variation in λ, V(λ), did differ between scales. Life table response experiment analyses showed that V(λ) among populations came primarily from variation in seedling survival and progression of non-reproductive plants, whereas V(λ) among microsites was primarily due to the variable fertility of large adults. Prolonged dormancy was important in reducing V(λ) among quadrats at both the scales, partly countering fluctuations in other transitions such as recruitment. This result represents some of the first evidence that underground “bulb banks” could function to offset the effects of a spatially heterogeneous environment in a manner analogous to seed banks. Future work is needed to isolate the specific, sometimes idiosyncratic, life history phenomena acting to modulate plant population dynamics in a spatial context.  相似文献   

2.
Population Dynamics of Agave marmorata Roezl. under Two Contrasting Management Systems in Central Mexico. This paper evaluates the impacts of traditional management on the population dynamics of Agave marmorata, a multipurpose, useful species that is dominant in the Zapotitlán Salinas Valley, Puebla, Mexico. During 2002–2003 and 2003–2004, we constructed matrix models for two populations—one unmanaged, the other subject to plant extraction and cutting of flowering stalks. We also conducted prospective (elasticity) and retrospective (life table response experiments) analyses. Overall, the unmanaged population had higher finite rates of increase (λ) than the managed one. This variation in λ was the result of a decrease in the individual growth and fecundity in the managed population. Survival and growth were the demographic processes with the highest contribution to λ in the unmanaged population, while survival was the most important in the managed one. Our results suggest that management and plant extraction practices could be having negative effects on the population dynamics of this plant species. Recommendations are provided in order to promote positive effects on its vital rates and regeneration capacity.  相似文献   

3.
We studied the demography of Viola elatior, V. pumila, and V. stagnina, three rare and endangered Central European floodplain species, to (i) analyse variation in life-cycles among congeners and between regions (Dyje-Morava floodplains, Czech Republic; Upper Rhine, Germany), (ii) to define sensitive stages in the life-cycles, and (iii) to identify possible threats for population viability and species conservation. Matrix models were based on the fate of marked individuals from a total of 27 populations over two years. We analysed population growth rate (λ), stage distribution, net reproductive rate (R 0), generation time, age at first reproduction, and elasticity and calculated a life table response experiment (LTRE). Most populations were declining and λ did not differ between species or regions during the observed interval. Despite higher probabilities for survival and flowering in the Dyje populations, R 0 was higher in the Rhine populations. Also other demographic traits showed consistent differences between regions and/or species. Complex life-cycles and large variation in λ precluded unequivocal identification of sensitive stages or vital rates for conservation. Variation between regions may be a consequence of differences in habitat quality. Our results suggest that deterministic processes such as reduced management, succession, habitat destruction, and lack of disturbance through reduced or eliminated flooding present the strongest threat for the viability and persistence of populations of the three floodplain violets as compared with stochastic processes. However, the persistent seed bank of the species may buffer populations against environmental variation and represents a reservoir for recovery after resumption of suitable land-use management.  相似文献   

4.
The dynamics of plant populations in arid environments are largely affected by the unpredictable environmental conditions and are fine-tuned by biotic factors, such as modes of recruitment. A single species must cope with both spatial and temporal heterogeneity that trigger pulses of sexual and clonal establishment throughout its distributional range. We studied two populations of the clonal, purple prickly pear cactus, Opuntia macrocentra, in order to contrast the factors responsible for the population dynamics of a common, widely distributed species. The study sites were located in protected areas that correspond to extreme latitudinal locations for this species within the Chihuahuan Desert. We studied both populations for four consecutive years and determined the demographic consequences of environmental variability and the mode of reproduction using matrix population models, life table response experiments (LTREs), and loop and perturbation analyses. Although both populations seemed fairly stable (population growth rate, λ∼1), different demographic parameters and different life cycle routes were responsible for this stability in each population. In the southernmost population (MBR) LTRE and loop and elasticity analyses showed that stasis is the demographic process with the highest contributions to λ, followed by sexual reproduction, and clonal propagation contributed the least. The northern population (CR) had both higher elasticities and larger contributions of stasis, followed by clonal propagation and sexual recruitment. Loop analysis also showed that individuals in CR have more paths to complete a life cycle than those in MBR. As a consequence, each population differed in life history traits (e.g., size class structure, size at sexual maturity, and reproductive value). Numerical perturbation analyses showed a small effect of the seed bank on the λ of both populations, while the transition from seeds to seedlings had an important effect mainly in the northern population. Clonal propagation (higher survival and higher contributions to vital rates) seems to be more important for maintaining populations over long time periods than sexual reproduction.  相似文献   

5.
Disanthus cercidifolius Maxim. var. longipes H.T. Chang usually has two inflorescences growing in opposite directions in the axillae, but occasionally three inflorescences grow paratactically. The typical flowering process could be divided into 4 periods: “Pre-dehiscence”, “Initial dehiscence”, “Full dehiscence” and “Withering”. Both the natural population and the planted population had a flowering peak of 15–35 days after the first flower bloomed. There were significant differences between the time courses of flowering of the two populations. Out-crossing is the main breeding system in this species. And autogamy decreases the risk of reproductive failure of this species. The main insect pollinators of D. cercidifolius var. longipes are Episyrphus balteatus de Geer, Scaptodrosophila coracina Kikkawa and Peng, Polistes olivaceus de Geer, Apis cerana Fabricius, Nezara viridula L. and Coccinella septempunctata L., and so on. Among the insects, S. coracina and E. balteatus are the most important and efficient pollinators, but others are inefficient pollinators. Though wind pollination is not efficient, it guarantees reproduction when insect pollinators are not available. “Mass flowering” is an adaptive behavior and reproductive strategy of this species, and “few fruiting” could be caused by the lack of pollinators.  相似文献   

6.
Dwarf dogwoods (or the bunchberries) are the only suffrutex in Cornaceae. They are attractive ground cover ornamentals with clusters of small flowers surrounded by petaloid bracts. Little has been reported on plant regeneration of dogwoods. As a step toward unraveling the molecular basis of inflorescence evolution in Cornus, we report an efficient regeneration system for a dwarf dogwood species C. canadensis through organogenesis from rejuvenated leaves, and characterize the development of the plantlets. We used the nodal stem segments of vegetative branches as explants. Micropropogated shoots were quickly induced from axillary buds of nodes on an induction medium consisting of basal MS medium supplemented with 4.44 μM BAP and 0.54 μM NAA. The new leaves of adventitious shoots were used as explants to induce calli on the same induction medium. Nearly 65% of leaf explants produced calli, 80% of which formed adventitious buds. Gibberellic acid (1.45 μM) added to the same induction medium efficiently promoted quick elongation of most adventitious buds, and 0.49 μM IBA added to the basal MS medium promoted root formation from nearly 50% of the elongated shoots. The growth of plantlets in pot soil was characterized by the development of functional woody rhizomes, which continuously developed new aboveground vegetative branches, but not flowering branches, within the past 12 months. Potential reasons causing the delay of flowering of the regenerated plants are discussed. The establishment of this regeneration system facilitates developing a genetic transformation system to test candidate genes involved in the developmental divergence of inflorescences in Cornus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Edmunds PJ 《Oecologia》2005,146(3):350-364
To date, coral death has been the most conspicuous outcome of warming tropical seas, but as temperatures stabilize at higher values, the consequences for the corals remaining will be mediated by their demographic responses to the sub-lethal effects of temperature. To gain insight into the nature of these responses, here I develop a model to test the effect of increased temperature on populations of three pocilloporid corals at One Tree Island, near the southern extreme of the Great Barrier Reef (GBR). Using Seriatopora hystrix, S. caliendrum and Pocillopora damicornis as study species, the effects of temperature on growth were determined empirically, and the dynamics of their populations determined under natural temperatures over a 6-month period between 1999 and 2000 [defined as the study year (SY)]. The two data sets were combined in a demographic test of the possibility that the thermal regime projected for the southern GBR in the next 55–83 years—warmer by 3°C than the study year (the SY+3 regime), which is equivalent to 1.4°C warmer than the recent warm year of 1998—would alter coral population trajectories through the effects on coral growth alone; the analyses first were completed by species, then by family after pooling among species. Laboratory experiments showed that growth rates (i.e., calcification) varied significantly among species and temperatures, and displayed curvilinear thermal responses with growth maxima at ∼27.1°C. Based on these temperature-growth responses, the SY+3 regime is projected to: (1) increase annualized growth rates of all taxa by 24–39%, and defer the timing of peak growth from the summer to the autumn and spring, (2) alter the intrinsic rate of population growth (λ) for S. hystrix (λ decreases 26%) and S. caliendrum (λ increases 5%), but not for P. damicornis, and (3) have a minor effect on λ (a 0.3% increase) for the Pocilloporidae, largely because λ varies more among species than it does between temperatures. Ten-year population projections suggest that the effects of a sub-lethal increase in temperature (i.e., the SY+3 regime) are relatively small compared to the interspecific differences in population dynamics, but nevertheless will alter the population size and increase the relative abundance of large colonies at the expense of smaller colonies for all three species, as well as the Pocilloporidae. These effects may play an important role in determining the nuances of coral population structure as seawater warms, and their significance may intensity if the coral species pool is depleted of thermally sensitive species by bleaching.  相似文献   

8.
Flowering timing is very important for the reproductive success of higher plants. However, effects of salt on plant flowering and the underlying molecular mechanisms are largely unknown. Here, we show that salt stress delays flowering in Arabidopsis in a dose-dependent manner. Mild salt stress (≤50 mM NaCl) promoted and prolonged the vegetative growth, whereas high salinity (≥100 mM NaCl) largely delayed or inhibited the transition from vegetative growth to reproductive development. The gibberellin (GA)-pathway plays an important role in this phenotype, and application of exogenous GA could restore late flowering induced by salt. In addition, the CONSTANS (CO)/FLOWERING LOCUS T (FT) module may also play a critical role in mediating the effects of salt on flowering. The mRNA abundance of CO was significantly reduced by salt stress in a dose-dependent manner. The constans (co-2) mutants did not respond to moderate salt stress, whereas over-expressing CO manifested no delay in flowering time in response to salinity. Expression of FT, SOC1 and LFY in the downstream of the pathways was also reduced by salt according to dose. Moreover, salt-sensitive mutant salt overly sensitive3 (sos3) exhibited greater sensitivity in flowering, further suggesting that ion disequilibrium mediates salt-induced late flowering. Kexue Li and Youning Wang contributed equally to this report.  相似文献   

9.
Yamagishi N  Yoshikawa N 《Planta》2011,233(3):561-568
The flowering integrator gene FLOWERING LOCUS T (FT) in Arabidopsis thaliana is conserved between diverse plant species and is thought to be the flowering signal ‘‘florigen’’, a universal long-distance mobile signal. In soybean, two FT homologs having a function to induce flowering in Arabidopsis have been identified. In this study, we showed that the expression of FT from Arabidopsis by the Apple latent spherical virus (ALSV) vector promoted precocious flowering and terminated vegetative growth in a wide range of genotypes of soybean, without using a short-day treatment. Four determinate and two indeterminate cultivars, infected with ALSV expressing FT (FT-ALSV), set flower buds on shoot apices and terminated vegetative growth at the fourth- to seventh-node stages under long-day conditions. In contrast, non-infected, healthy plants did not set flower buds on shoot apices at the same stage under the same conditions. After flowering, soybean cultivars infected with FT-ALSV, belonging to different maturity groups and stem growth habits, matured and produced seeds. The results suggest that the basic flowering pathway controlled by FT in A. thaliana might also be conserved in soybean. A system for precocious flowering and shortening of generation time using FT-ALSV would be a useful and novel technology for efficient soybean breeding.  相似文献   

10.
Introduction of biological control agents to reduce the abundance of exotic invasive plant species is often considered necessary but risky. I used matrix projection models to investigate the current population dynamics of Clidemia hirta (Melastomataceae), an invasive shrub, in two rainforest stands on the island of Hawaii and to predict the efficacy of hypothetical biological control agents in reducing population growth rates. Stage-structured matrix models were parameterized with field data collected over 3 years from 2906 C. hirta plants in a recently invaded forest with an open overstory (Laupahoehoe) and 600 plants in a less recently invaded forest with a closed canopy (Waiakea). Asymptotic population growth rates (λ) for both populations in all years were greater than one, demonstrating that both populations were growing. Composite elasticities were high for the seedling life-history stage and fecundity, and near-term demographic elasticities suggested that changes in seedling survival would have the largest effect on population size in the short term. However, simulations showed that almost 100% of seedlings or new recruits produced per reproductive adult would have to be destroyed to cause populations to go locally extinct under current environmental conditions. Herbivores or pathogens that decrease survival across all vegetative stages by 12% at Waiakea and 64% at Laupahoehoe were projected to cause the populations to decline. Thus, biocontrol agents that reduce survival of multiple life-history stages rather than seed production should be pursued to control C. hirta in Hawaiian rainforests.  相似文献   

11.
The effects of simulated herbivory (early or late defoliation and cutting of the flowering shoot) on the growth and reproduction of three species of monocarpic composite forbs (Crepis pulchra, Picris hieracioides and C. foetida) with different inflorescence architectures were studied in experimental plots. For the three species studied, early defoliation had no significant effect on subsequent growth. In contrast, late defoliation, occurring at the start of the season of drought, had a negative effect on growth and reproduction in the two Crepis species, particularly C. foetida, but had less effect on P. hieracioides. Sexual biomass was more clearly affected by late defoliation than was vegetative biomass, although the effects differed markedly among species possibly as a result of differences in phenology. Clipping the flowering shoot removed about 3 times less biomass than late defoliation and had little effect on vegetative biomass. It had much greater effects on the sexual biomass in P. hieracioides and C. pulchra, and resulted in the production of many shoots sprouting from the rosette, allowing the treated plants to regain a vegetative biomass close to that of control plants. Clipping did however lead to the production of shorter shoots and a reduction in the number of capitula formed. In C. foetida, much branching occurred even when the main shoot was not cut; the architecture of individual plants was therefore only slightly changed by clipping the apical bud and the sexual biomass of this species was not affected by ablation of the flowering shoot. Overcompensation was found in only two families of C. pulchra for vegetative biomass. No over-compensation was found for sexual biomass, despite an increase in the number of flowering shoots in C. pulchra and P. hieracioides following clipping. However situations close to compensation for the vegetative biomass in the three species and in P. hieracioides for the sexual biomass were recorded. The response of the three study species to simulated herbivory were related to their architecture and to the time of defoliation.  相似文献   

12.
The effect of five constant temperatures (16, 22, 26, 31 and 36°C) on biological (survival and duration of developmental stages, fecundity and longevity of females, sex-ratio) and demographic parameters (R o , G, r m and λ) of the two main phytophagous mites that attack cassava in Africa,Mononychellus progresivus Doreste andOligonychus gossypii (Zacher), was studied in the laboratory. Experiments were performed simultaneously on the two mite species reared on the same cassava variety (1M20) under controlled conditions: 70±10% r.h. and 12L∶12D. The lower thermal threshold was 13°C forM. progresivus and 11°C forO. gossypii. Both species developed in the range from 22 to 36°C. The shortest development time was obtained at 31°C for both species; it was 7.2 days forM. progresivus and 8.2 days forO. gossypii. Maximum fecundity of both species was recorded at 26°C with 42.1 eggs forM. progresivus and 36.3 eggs forO. gossypii The highest intrinsic rate of increase (r m ) was obtained at 31°C for both species with 0.289 and 0.214 forM. progresivus andO. gossypii, respectively.  相似文献   

13.
Citrus FT (CiFT) cDNA, which promoted the transition from the vegetative to the reproductive phase in Arabidopsis thaliana, when constitutively expressed was introduced into trifoliate orange (Poncirus trifoliata L. Raf.). The transgenic plants in which CiFT was expressed constitutively showed early flowering, fruiting, and characteristic morphological changes. They started to flower as early as 12 weeks after transfer to a greenhouse, whereas wild-type plants usually have a long juvenile period of several years. Most of the transgenic flowers developed on leafy inflorescences, apparently in place of thorns; however, wild-type adult trifoliate orange usually develops solitary flowers in the axils of leaves. All of the transgenic lines accumulated CiFT mRNA in their shoots, but there were variations in the accumulation level. The transgenic lines showed variation in phenotypes, such as time to first flowering and tree shape. In F1 progeny obtained by crossing ‘Kiyomi’ tangor (C. unshiu × sinensis) with the pollen of one transgenic line, extremely early flowering immediately after germination was observed. The transgene segregated in F1 progeny in a Mendelian fashion, with complete co-segregation of the transgene and the early flowering phenotype. These results showed that constitutive expression of CiFT can reduce the generation time in trifoliate orange.  相似文献   

14.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

15.
Transition matrix models were used to examine the population dynamics in the facultative biennial Carum carvi L. in semi-natural grasslands, specifically to assess what life cycle stages are important for population development and to evaluate the effects of environmental stochasticity on population persistence and, hence, the ability to develop remnant populations. The demographic studies were conducted over a 4-year period in three moderately grazed grasslands that differed in onset and duration of grazing. Experimental seed-sowing was also conducted in disturbed and undisturbed plots in the populations. Deterministic and stochastic models yielded overall negative population growth (λ < 1) for the populations. λ was sensitive to transitions in the most frequent vegetative stage classes. Elasticity analysis indicated that a large proportion of population growth could be ascribed to the stasis of individuals in the largest vegetative stage class. Life-table response experiment (LTRE) analyses showed also that progression to larger stage classes was important in explaining the between-population variation in λ. The expected time to extinction was on the order of several decades for the study populations. Seed-sowing indicated that seedling establishment was limited by both seed and micro-site availability. The populations of C. carvi seem to be able to persist for a rather long time in moderately grazed semi-natural grasslands, even in cases where populations are destined to become extinct. The results, thus, indicate that “biennials” are able to maintain remnant populations in managed semi-natural grasslands.  相似文献   

16.
A study was conducted to ascertain monthly changes in biomass of the plant and nutrient content in various organs of Nymphoides hydrophylla grown in a tropical pond during September 1999–August 2000 in relation to environmental factors. Biomass of N. hydrophylla ranged from 25 to 247 g dry weight m−2. Among the various organs, leaf blade showed highest nitrogen (3.0–4.6%) and phosphorus content (0.9–2.4%). Comparative data of three Nymphoides species showed that N. peltata, the temperate species, had maximum potential of biomass production while long flowering period, year around growth, higher nitrogen content in various organs and presence of other associated flora were unique features of tropical species (N. hydrophylla and N. indica). Both water temperature and water level together appeared to be the best environmental variables that significantly explained the variability in biomass of N. hydrophylla.  相似文献   

17.
Sustainable use of nontimber forest products (NTFPs) can be affected by levels of extractions as well as by other anthropogenic influences such as fire and grazing. We examined the effects of fire on the demography of Phyllanthus emblica, an important NTFP in the forests of Biligiri Rangan Hills, India. We then assessed demographic responses to the combined effects of fire and current fruit harvesting patterns. Fruits of Phyllanthus are commercially harvested by an indigenous forest dwelling people. Using matrix population models, we compared demographic indices across a chronosequence of time since last fire. Population growth rates (λ) ranged from 0.7692 to 1.1443 across the five times since last fire. λ was the lowest at times since last fire of 2 and 3 yr. Frequent fires increased time to maturity by altering growth and survival rates, thereby causing a demographic shift from growth to regressions or negative growth. Elasticity analysis revealed that stasis of adults makes the biggest contribution to λ. Simulations of periodic and stochastic fire regimes suggest that higher λ and population persistence can be achieved at fire-return intervals of ≥7 and ≥9 yr, respectively. These fire-return intervals became longer when the simulations included harvesting and fire. Extinction probabilities under the current fire regimes (every 2–3 yr) suggest that populations will decline to lower densities. Our findings provide critical information for developing guidelines for sustainable use and management of NTFPs in Biligiri Rangan Hills, and demonstrate the need to incorporate various human-generated physical regimes in assessing sustainability of NTFPs.  相似文献   

18.
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV). Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 μg/ml to fluconazole. This constitutes, to the authors knowledge the first recovery of this organism in Venezuela.  相似文献   

19.
Stachyurus macrocarpus and S. macrocarpus var. prunifolius are critically endangered shrub species in the Bonin (Ogasawara) Islands, Japan. These species are extremely rare, and the numbers of individuals in wild populations are 68 in S. macrocarpus and 13 in S. macrocarpus var. prunifolius. For the investigation of genetic diversity, genetic structure and relatedness among remnant individuals of these endangered species, we developed eight microsatellite markers from S. macrocarpus var. prunifolius and characterized these markers for S. macrocarpus var. prunifolius and S. macrocarpus using all naturally occurring individuals of these species. The expected heterozygosities of these markers ranged from 0.14 to 0.67 in S. macrocarpus var. prunifolius, and from 0.02 to 0.84 in S. macrocarpus. The markers described here will be useful for investigating the genetic diversity, genetic structure and relatedness among remnant individuals, and planning the restoration of these critically endangered species.  相似文献   

20.
An investigation into the role of carbohydrates in flowering of the endangered species Kniphofia leucocephala Baijnath. (Asphodelaceae) in vitro revealed that a carbohydrate source is essential for the induction of inflorescences. Both the concentration and type of sugar influenced the percentage of flowering, with 60 g l−1 fructose and 10 μM N6-benzyladenine (BA) inducing the best flowering response. A high percentage of flowering was also observed with 60 g l−1 glucose and 10 μM BA. The optimal concentration of sucrose for flower induction was 30 g l−1, beyond which the flowering percentage declined, but could be partially restored by increasing the BA concentration. Although overall plant growth declined at high sugar concentrations, there does not appear to be any significant correlations between various growth parameters and flowering percentage, suggesting that sugars play a direct role in floral transition in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号