首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transferrin receptor 1 (TfR1) is a ubiquitous type II membrane receptor with 61 amino acids in the N-terminal cytoplasmic region. TfR1 is highly expressed in cancer cells, particularly under iron deficient conditions. Overexpression of TfR1 is thought to meet the increased requirement of iron uptake necessary for cell growth. In the present study, we used transferrin (Tf), a known ligand of TfR1, and gambogic acid (GA), an apoptosis-inducing agent and newly identified TfR1 ligand to investigate the signaling role of TfR1 in breast cancer cells. We found that GA but not Tf induced apoptosis in a TfR1-dependent manner in breast cancer MDA-MB-231 cells. Estrogen receptor-positive MCF-7 cells lack caspase-3 and were not responsive to GA treatment. GA activated the three major signaling pathways of the MAPK family, as well as caspase-3, -8, and Poly(ADP-ribose)polymerase apoptotic pathway. Interestingly, only Src inhibitor PP2 greatly sensitized the cells to GA-mediated apoptosis. Further investigations by confocal fluorescence microscopy and immunoprecipitation revealed that Src and TfR1 are constitutively bound. Using TfR1-deficient CHO TRVB cells, point mutation studies showed that Tyr(20) within the (20)YTRF(23) motif of the cytoplasmic region of TfR1 is the phosphorylation site by Src. TfR1 Tyr(20) phosphomutants were more sensitive to GA-mediated apoptosis. Our results indicate that, albeit its iron uptake function, TfR1 is a signaling molecule and tyrosine phosphorylation at position 20 by Src enhances anti-apoptosis and potentiates breast cancer cell survival.  相似文献   

3.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.  相似文献   

4.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

5.
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.  相似文献   

6.
Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, α and β. Like TfR1, TfR2α is a type II membrane protein, but the β form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2α, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells. The association constant for the binding of diferric transferrin (Tf) to TfR2α is 5.6 × 106 M 1, which is about 50 times lower than that for the binding of Tf to TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2α without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2α with Tf was further investigated using atomic force microscopy, a powerful tool used for investigating the interaction between a ligand and its receptor at the single-molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by two energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different physiological roles of the two receptors.  相似文献   

7.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

8.
9.
The posttranslational regulation of transferrin receptor (TfR1) is largely unknown. We investigated whether iron availability affects TfR1 endocytic cycle and protein stability in HepG2 hepatoma cells exposed to ferric ammonium citrate (FAC). NH4Cl and bafilomycin A1, but not the proteasomal inhibitor MG132, prevented the FAC-mediated decrease in TfR1 protein levels, thus indicating lysosomal involvement. Knockdown experiments showed that TfR1 lysosomal degradation is independent of 1) endocytosis mediated by the clathrin adaptor AP2; 2) Tf, which was suggested to facilitate TfR1 internalization; 3) H-ferritin; and 4) MARCH8, previously implicated in TfR1 degradation. Notably, FAC decreased the number of TfR1 molecules at the cell surface and increased the Tf endocytic rate. Colocalization experiments confirmed that, upon FAC treatment, TfR1 was endocytosed in an AP2- and Tf-independent pathway and trafficked to the lysosome for degradation. This unconventional endocytic regulatory mechanism aimed at reducing surface TfR1 may represent an additional posttranslational control to prevent iron overload. Our results show that iron is a key regulator of the trafficking of TfR1, which has been widely used to study endocytosis, often not considering its function in iron homeostasis.  相似文献   

10.
Iron is essential for normal brain function and its uptake in the developing rat brain peaks during the first two weeks after birth, prior to the formation of the blood–brain barrier (BBB). The first step of iron transport from the blood to the brain is transferrin receptor (TfR)-mediated endocytosis in the capillary endothelial cells. However, the subsequent step from the endothelium into interstitium has not been fully described. The goal of this study was to examine the expression of iron transport proteins by immunodetection and RT–PCR in the developing rat brain. Tf and TfR are transiently expressed in perivascular NG2+ cells of the capillary wall during the early postnatal weeks in the rat brain. However, MTP-1 and hephaestin were expressed in endothelial cells, but not in the NG2+ perivascular cells. Immunoblot analysis for these iron transfer proteins in the developing brain generally confirmed the immunochemical findings. Furthermore, the expression of Tf and TfR in the blood vessels precedes its expression in oligodendrocytes, the main iron-storing cells in the vertebrate brain. RT–PCR analysis for the primary culture of endothelial cells and pericytes revealed that Tf and TfR were highly expressed in the pericytes while MTP-1 and hephaestin were expressed in the endothelial cells. The specific expression of Tf and TfR in brain perivascular cells and MTP-1 and hephaestin in endothelial cells suggest the possibility that trafficking of elemental iron through perivascular cells may be instrumental in the distribution of iron in the developing central nervous system.  相似文献   

11.
The proliferative response of peripheral blood mononuclear cells (PBMC) in synthetic serum-free media depends on the presence of sufficient amounts of transferrin (Tf). In the present communication we show that the reduction of Tf concentration in culture media results in a decreased proliferation, whereas lymphokine production and the expression of activation markers (IL-2 receptor; transferrin receptor, (TfR); HLA class II) remain unchanged. To examine whether this effect is due to iron depletion we added iron chelates (ferric citrate, FeCi; ferric nitrilotriacetic acid, FeNTA) which can be internalized by cells without the requirement for Tf. The iron chelates could fully restore the proliferative response even in complete absence of Tf, suggesting that the observed inhibitory effect was indeed caused by iron depletion. Addition of a monoclonal TfR antibody, J 64, also caused a marked inhibition of proliferation of PBMC in regular serum-containing medium as well as in Tf-free synthetic medium; this effect could not be overcome by any of the tested iron chelates. Therefore, growth inhibition caused by J 64 cannot simply be attributed to iron starvation. These data suggest that J 64 may interfere with processes others than iron uptake and that the TfR might confer a necessary promoting signal for lymphocyte proliferation.  相似文献   

12.
Pathways mediating pulmonary metal uptake remain unknown. Because absorption of iron and manganese could involve similar mechanisms, transferrin (Tf) and transferrin receptor (TfR) expression in rat lungs was examined. Tf mRNA was detected in bronchial epithelium, type II alveolar cells, macrophages, and bronchus-associated lymphoid tissue (BALT). Tf protein levels in lung and bronchoalveolar lavage fluid did not change in iron deficiency despite increased plasma levels, suggesting that lung Tf concentrations are regulated by local synthesis in a manner independent of body iron status. Iron oxide exposure upregulated Tf mRNA in bronchial and alveolar epithelium, macrophages, and BALT, but protein was not significantly increased. In contrast, TfR mRNA and protein were both upregulated by iron deficiency. To examine potential interactions with lung Tf, rats were intratracheally instilled with (54)Mn or (59)Fe. Unlike (59)Fe, interactions between (54)Mn and Tf in lung fluid were not detected. Absorption of intratracheally instilled (54)Mn from the lungs to the blood was unimpaired in Belgrade rats homozygous for the functionally defective G185R allele of divalent metal transporter-1, indicating that this transporter is also not involved in pulmonary manganese absorption. Pharmacological studies of (54)Mn uptake by A549 cells suggest that metal uptake by type II alveolar epithelial cells is associated with activities of both L-type Ca(2+) channels and TRPM7, a member of the transient receptor potential melastatin subfamily. These results demonstrate that iron and manganese are absorbed by the pulmonary epithelium through different pathways and reveal the potential role for nonselective calcium channels in lung metal clearance.  相似文献   

13.
Transferrin (Tf) endocytosis and recycling are essential for iron uptake and the regulation of cell proliferation. Tf and Tf receptor (TfR) complexes are internalized via clathrin-coated pits composed of a variety of proteins and lipids and pass through early endosomes to recycling endosomes. We investigated the role of sphingomyelin (SM) synthases (SMS1 and SMS2) in clathrin-dependent trafficking of Tf and cell proliferation. We employed SM-deficient lymphoma cells that lacked SMSs and that failed to proliferate in response to Tf. Transfection of SMS1, but not SMS2, enabled these cells to incorporate SM into the plasma membrane, restoring Tf-mediated proliferation. SM-deficient cells showed a significant reduction in clathrin-dependent Tf uptake compared with the parental SM-producing cells. Both SMS1 gene transfection and exogenous short-chain SM treatment increased clathrin-dependent Tf uptake in SM-deficient cells, with the Tf being subsequently sorted to Rab11-positive recycling endosomes. We observed trafficking of the internalized Tf to late/endolysosomal compartments, and this was not dependent on the clathrin pathway in SM-deficient cells. Thus, SMS1-mediated SM synthesis directs Tf-TfR to undergo clathrin-dependent endocytosis and recycling, promoting the proliferation of lymphoma cells.  相似文献   

14.
The effects of ferric ammonium citrate (FAC) and desferrioxamine (DFO) on iron (Fe), and transferrin (Tf) uptake have been investigated using SK-MEL-28 human melanoma cells, which express the Tf homologue, melanotransferrin, in high concentrations. Previously we demonstrated two separate Fe uptake mechanisms from Tf, viz. a specific process mediated by the transferrin receptor (TfR) and a nonspecific process (Richardson, D. R., and Baker, E. (1990) Biochim. Biophys. Acta 1053, 1-12). Cells exposed to DFO demonstrated up-regulation of the TfR with a concurrent increase in the rate of Fe uptake. Desferrioxamine also stimulated the nonspecific process of Fe uptake, resulting in a further increase in accumulation of Fe over Tf after saturation of the specific TfR. Ferric ammonium citrate had two effects. First, it resulted in down-regulation of the TfR. Second, and paradoxically, it markedly stimulated the rate of Fe uptake from Tf by the nonspecific process without increasing the rate of nonspecific Tf uptake. These data conclusively demonstrate that two entirely different mechanisms of iron uptake from Tf exist in melanoma cells and that ferric ammonium citrate may be a useful experimental tool to further characterize the specific and nonspecific mechanisms of Fe uptake from Tf.  相似文献   

15.
16.
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells.  相似文献   

17.
This study investigated the effects of strenuous exercise on transferrin (Tf)-receptor (TfR) expression and Tf-bound iron (Tf-Fe) uptake in erythroblasts of rat bone marrow. Female Sprague-Dawley rats were randomly assigned to either an exercise or sedentary group. Animals in the exercise group swam 2 h/day for 3 mo in a glass swimming basin. Both groups received the same amount of handling. At the end of 3 mo, the bone marrow erythroblasts were freshly isolated for Tf-binding assay and determination of Tf-Fe uptake in vitro. Tissue nonheme iron and hematological iron indexes were measured. The number of Tf-binding sites found in erythroblasts was approximately 674,500 +/- 132,766 and 1,270,011 +/- 235,321 molecules/cell in control and exercised rats, respectively (P < 0. 05). Total Fe and Tf uptake by the cells was also significantly increased in the exercised rats after 30 min of incubation. Rates of cellular Fe accumulation were 5.68 and 2.58 fmol. 10(6) cells(-1). min(-1) in the exercised and control rats, respectively (P < 0.05). Tf recycling time and TfR affinity were not different in exercised and control rats. Increased cellular Fe was mainly located in the stromal fraction, suggesting that most of accumulated Fe was transported to the mitochondria for heme synthesis. The findings demonstrated that the increased cellular Fe uptake in exercised rats was a consequence of the increased TfR expression rather than the changes in TfR affinity and Tf recycling time. The increase in TfR expression and cellular Fe accumulation, as well as the decreased serum Fe concentration and nonheme Fe in the liver and the spleen induced by exercise, probably represented the early signs of Fe deficiency.  相似文献   

18.
While the intracellular pathways of ligands after receptor-mediated endocytosis have been studied extensively in mammalian cells, in insect cells these pathways are largely unknown. We transfected Drosophila Schneider line 2 (S2) cells with the human low-density lipoprotein (LDL) receptor (LDLR) and transferrin (Tf) receptor (TfR), and used endocytosis of LDL and Tf as markers. After endocytosis in mammalian cells, LDL is degraded in lysosomes, whereas Tf is recycled. Fluorescence microscopy analysis revealed that LDL and Tf are internalized by S2 cells transfected with LDLR or TfR, respectively. In transfectants simultaneously expressing LDLR and TfR, both ligands colocalize in endosomes immediately after endocytic uptake, and their location remained unchanged after a chase. Similar results were obtained with Spodoptera frugiperda Sf9 cells that were transfected with TfR, suggesting that Tf is retained intracellularly by both cell lines. The insect lipoprotein, lipophorin, is recycled upon lipophorin receptor (LpR)-mediated endocytosis by mammalian cells, however, not after endocytosis by LpR-expressing S2 transfectants, suggesting that this recycling mechanism is cell-type specific. LpR is endogenously expressed by fat body tissue of Locusta migratoria for a limited period after an ecdysis. A chase following endocytosis of labeled lipophorin by isolated fat body tissue at this developmental stage resulted in a significant decrease of lipophorin-containing vesicles, indicative of recycling of the ligand.  相似文献   

19.
The coordination of transferrin receptor (TfR) expression and heme synthesis was investigated in mouse erythroleukemia (MEL) cells of line 707 treated with heme synthesis inhibitors or in a variant line Fw genetically deficient in heme synthesis. Cells of line 707 were induced for differentiation by 5 mM hexamethylene bisacetamide (HMBA). TfR expression increased in the course of induction, as judged by increased TfR mRNA synthesis, increased cytoplasmic TfR mRNA level, and by the increased number of cellular 125I-Tf binding sites. Addition of 0.1 mM succinylacetone (SA) decreased cellular TfR to the level comparable with the uninduced cells. The decrease was reverted by the iron chelator desferrioxamine (DFO) but not by exogenous hemin. In short-term (1-2 hours) incubation, SA inhibited 59Fe incorporation from transferrin into heme, whereas total cellular 59Fe uptake was increased. A decrease in TfR mRNA synthesis was apparent after 2 hours of SA treatment. Conversely, glutathione peroxidase mRNA synthesis, previously shown to be inducible by iron, was increased by SA treatment. Cells of heme deficient line Fw did not increase the number of Tf binding sites after the induction of differentiation by 5 mM sodium butyrate. SA had no effect on TfR expression in Fw cells. The results suggest that the depletion of cellular non-heme iron due to the increase in heme synthesis maintains a high level of transferrin receptor expression in differentiating erythroid cells even after the cessation of cell division.  相似文献   

20.
In most cells, transferrin receptor (TfR1)-mediated endocytosis is a major pathway for cellular iron uptake. We recently cloned the human transferrin receptor 2 (TfR2) gene, which encodes a second receptor for transferrin (Kawabata, H., Yang, R., Hirama, T., Vuong, P. T., Kawano, S., Gombart, A. F., and Koeffler, H. P. (1999) J. Biol. Chem. 274, 20826-20832). In the present study, the regulation of TfR2 expression and function was investigated. A select Chinese hamster ovary (CHO)-TRVb cell line that does not express either TfR1 or TfR2 was stably transfected with either TfR1 or TfR2-alpha cDNA. TfR2-alpha-expressing cells had considerably lower affinity for holotransferrin when compared with TfR1-expressing CHO cells. Interestingly, in contrast to TfR1, expression of TfR2 mRNA in K562 cells was not up-regulated by desferrioxamine (DFO), a cell membrane-permeable iron chelator. In MG63 cells, expression of TfR2 mRNA was regulated in the cell cycle with the highest expression in late G(1) phase and no expression in G(0)/G(1). DFO reduced cell proliferation and DNA synthesis of CHO-TRVb control cells, whereas it had little effect on TfR2-alpha-expressing CHO cells when measured by clonogenic and cell cycle analysis. In addition, CHO cells that express TfR2-alpha developed into tumors in nude mice whereas CHO control cells did not. In conclusion, TfR2 expression may be regulated by the cell cycle rather than cellular iron status and may support cell growth both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号