首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Loss of function of GPA1, which encodes a guanine-nucleotide-binding protein, arrests the cell at the G1 phase and allows it to mate, suggesting that the gpa1 mutation spontaneously exerts an intracellular signal that mimics the action of mating factor. We have cloned the SGP2 gene, which was first identified as a secondary mutation that allowed a gpa1::HIS3 mutant to grow and to show a non-cell-type-specific sterile phenotype. Disruption of SGP2 confers temperature-sensitive growth and a-specific sterile phenotypes, characteristics similar to those conferred by the dpr1 (ram) mutation, a suppressor of RAS2Val-19. The following observations indicate that SGP2 and DPR1 are in fact identical. (i) The cloned SGP2 complements both the temperature-sensitive growth and the a-specific sterility of the dpr1 mutant and can be integrated into the chromosomal DPR1 locus. (ii) The cloned DPR1, in turn, complements the ability of sgp2 to suppress the lethality of gpa1::HIS3. (iii) The dpr1 mutation suppresses the growth defect of gpa1::HIS3, and the dpr1 gpa1::HIS3 strain shows a non-cell-type-specific sterile phenotype. (iv) sgp2 is closely linked to the dpr1 locus. The DPR1 product has been shown to be responsible for processing and fatty acid acylation of a-factor and RAS proteins at their carboxyl termini. Therefore, the SGP2 (DPR1) product may be involved in membrane localization of an essential component in the mating-factor signaling pathway.  相似文献   

4.
A mouse cDNA for the developmentally controlled, melanocyte-specific protein, tyrosinase-related protein 1 (TRP-1), was previously cloned and reported to show genetic linkage with the coat-colour locus brown (b) on mouse chromosome 4. The cDNA has been inserted into a retroviral vector derived from Moloney murine leukaemia virus, under the control of the human histone H4 promoter. This vector was used to infect melanocytes of the immortal line melan-b, which are homozygous for the b mutation and which display light brown pigmentation in culture. Infected cultures containing between 0.2 and 2 copies of provirus per cell displayed an altered phenotype: 20-50% of cells now had the black to dark brown colour characteristic of cultured wild-type (Black, B/B) mouse melanocytes. Thus the TRP-1 gene complements the brown mutation. We conclude that TRP-1 is the product of the wild-type b-locus.  相似文献   

5.
A mutation defective in the homothallic switching of mating type alleles, designated hml alpha-2, has previously been characterized. The mutation occurred in a cell having the HO MATa HML alpha HMRa genotype, and the mutant culture consisted of ca. 10% a mating type cells, 90% nonmater cells of haploid cell size, and 0.1% sporogenous diploid cells. Genetic analyses revealed that nonmater haploid cells have a defect in the alpha 2 cistron at the MAT locus. This defect was probably caused by transposition of a cassette originating from the hml alpha-2 allele by the process of the homothallic mating type switch. That the MAT locus of the nonmater cells is occupied by a DNA fragment indistinguishable from the Y alpha sequence in electrophoretic mobility was demonstrated by Southern hybridization of the EcoRI-HindIII fragment encoding the MAT locus with a cloned HML alpha gene as the probe. The hml alpha-2 mutation was revealed to be a one-base-pair deletion at the ninth base pair in the X region from the X and Y boundary of the HML locus. This mutation gave rise to a shift in the open reading frame of the alpha 2 cistron. A molecular mechanism for the mating type switch associated with the occurrence of sporogenous diploid cells in the mutant culture is discussed.  相似文献   

6.
A functional SNF1 gene product is required to derepress expression of many glucose-repressible genes in Saccharomyces cerevisiae. Strains carrying a snf1 mutation are unable to grow on sucrose, galactose, maltose, melibiose, or nonfermentable carbon sources; utilization of these carbon sources is regulated by glucose repression. The inability of snf1 mutants to utilize sucrose results from failure to derepress expression of the structural gene for invertase at the RNA level. We isolated recombinant plasmids carrying the SNF1 gene by complementation of the snf1 defect in S. cerevisiae. A 3.5-kilobase region is common to the DNA segments cloned in five different plasmids. Transformation of S. cerevisiae with an integrating vector carrying a segment of the cloned DNA resulted in integration of the plasmid at the SNF1 locus. This result indicates that the cloned DNA is homologous to sequences at the SNF1 locus. By mapping a plasmid marker linked to SNF1 in this transformant, we showed that the SNF1 gene is located on chromosome IV. We then mapped snf1 to a position 5.6 centimorgans distal to rna3 on the right arm; snf1 is not extremely closely linked to any previously mapped mutation.  相似文献   

7.
X. Chen  C. L. Simpson  K. L. Kindle    D. B. Stern 《Genetics》1997,145(4):935-943
A suppressor of a translation initiation defect caused by an AUG to AUU mutation in the Chlamydomonas reinhardtii chloroplast petD gene was isolated, defining a nuclear locus that we have named SIM30. A dominant mutant allele at this locus, sim30-1d, was found to increase the translation initiation rate of the mutant petD mRNA. sim30-1d was also able to suppress the translational defect caused by an AUG to AUC mutation in the petD gene, and an AUG to AUU mutation in the chloroplast petA gene. We therefore suggest that the SIM30 gene may encode a general chloroplast translation factor. The ability of sim30-1d to suppress the petD AUG to AUU mutation is diminished in the presence of one or more antibiotic resistance markers located within the 16S and 23S rRNAs, suggesting that the activity of the sim30-1d gene product in translation initiation may involve interaction with ribosomal subunits.  相似文献   

8.
Identifying and eliminating endogenous bacterial enzyme systems can significantly increase the efficiency of propagation of eukaryotic DNA in Escherichia coli. We have recently examined one such system which inhibits the propagation of lambda DNA rescued from transgenic mouse tissues. This rescue procedure utilizes lambda packaging extracts for excision of the lambda DNA from the transgenic mouse genome, as well as E. coli cells for subsequent infection and propagation. This assay, in combination with conjugal mating, P1 transduction, and gene cloning, was used to identify and characterize the E. coli locus responsible for this difference in efficiency. It was determined that the E. coli K-12 mcrB gene when expressed on a high-copy-number plasmid can cause a decrease in rescue efficiency despite the presence of the mcrB1 mutation, which inactivates the classic McrB restriction activity. (This mutation was verified by sequence analysis.) However, this McrB1 activity is not observed when the cloned mcrB1 gene is inserted into the E. coli genome at one copy per chromosome. A second locus was identified which causes a decrease in rescue efficiency both when expressed on a high-copy-number plasmid and when inserted into the genome. The data presented here suggest that this locus is mrr and that the mrr gene product can recognize and restrict cytosine-methylated sequences. Removal of this DNA region including the mrr gene from E. coli K-12 strains allows high rescue efficiencies equal to those of E. coli C strains. These modified E. coli K-12 plating strains and lambda packaging extract strains should also allow a significant improvement in the efficiency and representation of eukaryotic genomic and cDNA libraries.  相似文献   

9.
Adenylate kinase, the product of the adk locus in Escherichia coli K12, catalyzes the conversion of AMP and ATP to two molecules of ADP. The gene has been cloned by complementation of an adk temperature sensitive mutation. The DNA sequence of the complete coding region and of 5'- and 3'-untranslated regions were determined. The resulting protein sequence was found to contain several regions of high homology with cytosolic adenylate kinase of pig muscle (AK1), whose three-dimensional structure has been determined. The most significant of the amino acid exchanges is the replacement of histidine 36 with glutamine. This residue is believed to play a role in catalysis through metal ion binding. The codon usage pattern and the determination of adenylate kinase molecules per cell shows that the enzyme is one of the more abundant soluble proteins of the bacterial cells.  相似文献   

10.
A. Sakai  Y. Shimizu    F. Hishinuma 《Genetics》1988,119(3):499-506
We have isolated mutants responsible for an oversecretion phenotype in Saccharomyces cerevisiae, using a promoter of SUC2 and the gene coding for alpha-amylase from mouse as a marker of secretion. These mutations defined two complementation groups, designated as ose1 (over secretion) and rgr1 (resistant to glucose repression). The ose1 mutant produced an oversecretion of amylase by 12- to 15-fold under derepressing conditions; however, the amylase mRNA was present at nearly the same amount as it was in the parent cells. No expression of the amylase gene was detected under repressing conditions. The rgr1 mutant oversecreted amylase by 11- to 13-fold under repressing conditions by 15- to 18-fold under derepressing conditions. The rgr1 mutant showed pleiotropic effects on the following cellular functions: (1) resistance to glucose repression, (2) temperature-sensitive lethality, (3) sporulation deficieny in homozygous diploid cells, and (4) abnormal cell morphology. The rgr1 mutation was not allelic with ssn6 and cyc9, and failed to suppress snf1.  相似文献   

11.
PM61 is a chain-forming envC strain of Escherichia coli with a leaky outer membrane. It was found to have an oversized penicillin-binding protein 3, which was the result of an IS4 insertion in the prc gene. The other properties of PM61 were caused by the envC mutation. We cloned the envC (yibP) gene and identified the mutation site, causing a single residue substitution, H366Y, in the PM61 envC allele. The gene product was predicted to be a periplasmic protein having coiled-coil structure in the N-terminal region and homology to lysostaphin in the C-terminal region. Overexpression of envC inhibited cell growth, and overexpression of the PM61 mutant allele caused cell lysis. Disruption of the chromosomal envC caused the same defects as the envC point mutation, indicating the gene is dispensable for growth but important for normal septation/separation and cell envelope integrity.  相似文献   

12.
Activation of plasma membrane ATPase by the addition of glucose was examined in several cell division cycle mutants of Saccharomyces cerevisiae. The start mutant carrying the cdc25 mutation was shown to be defective in ATPase activation at the restrictive temperature. Genetic analysis showed that lack of growth and defective activation of ATPase at the restrictive temperature were caused by the same mutation. It was also found that CDC25 does not map at the same locus as the structural gene of plasma membrane ATPase (PMA1). We conclude that the product of CDC25 controls the activation of ATPase.  相似文献   

13.
The Notch locus of Drosophila plays an important role in cell fate decisions within the neurogenic ectoderm, a role thought to involve interactions at the cell surface. We have assayed the requirement for Notch gene expression in epidermal cells by two kinds of genetic mosaics. First, with gynandromorphs, we removed the wild-type gene long before the critical developmental events to produce large mutant clones. The genotype of cells in large clones was scored by means of an antibody to the Notch protein. Second, using mitotic recombination, we removed the gene at successively later times after completion of the mitotically active early cleavage stages, to produce small clones. These clones were detected by means of a linked mutation of cuticle pattern, armadillo. The results of both experiments demonstrate a requirement for Notch expression by epidermal cells, and thus argue against the model that the Notch product acts as a signal required only in the neuroblast to influence neighboring epidermal cells. The mitotic recombination experiment revealed that Notch product is required by epidermal cells subsequent to neuroblast delamination. This result implies that the Notch gene functions to maintain the determined state of epidermal cells, possibly by mediating cell surface interactions within the epidermis.  相似文献   

14.
PA3092 is an Escherichia coli mutant that forms filaments at 43 degrees C in the presence of cyclic AMP (cAMP). The mutation responsible for this phenotype is called fic-1. We cloned fic-1 from PA3092 by selection for the neighboring argD gene. The fic-1 gene product had a relative molecular mass of 21 kilodaltons by the maxicell method. A strain with the fic gene completely deleted was constructed by replacing fic with a kanamycin resistance gene. In one of the fic-deleted strains derived from PA3092, cAMP did not induce cell filamentation at 43 degrees C, but it did in the same strain harboring a plasmid containing the fic-1 gene. These results indicate that the fic-1 gene product is necessary for the induction of cell filamentation by cAMP but is dispensable to the cell. We also found that high levels of NaCl suppressed the cell filamentation induced by cAMP.  相似文献   

15.
16.
Direct cloning of the trxB gene that encodes thioredoxin reductase.   总被引:6,自引:2,他引:4  
A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase.  相似文献   

17.
Strains of both haploid mating types containing sst2 mutations are altered in response to pheromone; MATa sst2 cells are supersensitive to alpha-factor, and MAT alpha sst2 cells are supersensitive to a-factor. This phenotype suggests that SST2 encodes a component of the pheromone response pathway that is common to both mating types. We have cloned the SST2 gene by isolation of multicopy plasmids that complement the sst2-1 mutation. One such plasmid contained a 4.5-kilobase HindIII fragment that was able to complement the sst2-1 mutation in high or low copy number, integrated at the SST2 locus, and resulted in an sst2 phenotype when disrupted, indicating that this fragment contained the SST2 gene. We identified the functional region of the complementing DNA fragment by transposon mutagenesis. Sequencing of this fragment identified an open reading frame encoding 698 amino acids at a position that correlated well with the functional region. Expression of an Sst2-beta-galactosidase fusion was haploid specific and induced by exposure to pheromone. We discuss a model in which induction of the SST2 product results in inhibition of a component of the pheromone response pathway, resulting in desensitization to pheromone.  相似文献   

18.
A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11.  相似文献   

19.
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号