首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi‐continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations. Bacitracin‐functionalized magnetic particles were successfully applied, regenerated and reused up to 30 times. Immediate reproduction of the protease after ISMS proved the biocompatibility of this integrated approach. Six subsequent ISMS steps significantly increased the overall protease yield up to 98% because proteolytic degradation and potential inhibition of the protease in the medium could be minimized. Furthermore, integration of semi‐continuous ISMS increased the overall process efficiency due to reduction of the medium consumption. Process simulation revealed a deeper insight into protease production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.  相似文献   

3.
Adsorption of proteins from a crude preparation containing a lipase from Aspergillus niger on microporous polypropylene hollow fibers was studied at six different temperatures. Langmuir isotherms accurately describe the overall adsorption equilibria. Lipase is selectively adsorbed relative to the other proteins in the crude preparation. Hence, immobilization also provides further purification of the lipase. The predictions of the Langmuir model for the change in the specific activity of lipase upon adsorption are consistent with experimental results. The loading capacity of the hollow fibers decreases and the adsorption constant increases as temperature is increased. This effect is more significant in the case of lipolytic activity than it is for the total amount of adsorbed protein. Small, positive enthalpy changes are associated with the adsorption of lipase on these hydrophobic membranes.  相似文献   

4.
A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were employed directly in the broth during the fermentation, followed by in situ magnetic separation. Proof of the concept was first demonstrated in shake flask culture, then scaled up and applied during a fed batch cultivation in a 3.7 L bioreactor. It could be demonstrated that growth of B. licheniformis was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we could show that protease yield in total was enhanced by using in situ magnetic separation. The process described here is a promising technique to improve overall yield in bio production processes which are often limited due to weak downstream operations. Potential limitations encountered during a bioprocess can be overcome such as product inhibition or degradation. We also discuss the key points where research is needed to implement in situ magnetic separation in industrial production.  相似文献   

5.
A novel technique for immobilization of Candida rugosa lipase onto anionic colloidal gas aphrons (CGAs) is described. CGAs are spherical microbubbles (10-100 microm) composed of an inner gas core surrounded by a surfactant shell. In this initial study, greater than 80% lipase (w/w) was effectively retained on the CGAs. Leakage of protein from the CGAs and the activity of the adsorbed lipase decreased with increasing enzyme loading; this indicates that multilayers of lipase may be adsorbing onto the CGAs. The CGA-immobilised lipase displayed normal Michaelis-Menten dependence on substrate concentration and also exhibited greater activity than the free enzyme.  相似文献   

6.
In this study, we have prepared a hydrophobic cryogel for the chromatographic separation of lipase from its aqueous solutions including single protein and protein mixture and also Yarrowia lipolytica cell extract. N‐methacryloyl‐(l )‐phenylalanine methyl ester was used as a monomer to provide the hydrophobic character to the prepared cryogels. The highest adsorption capacity was observed at pH 5.0 at 0.5 mL min?1 flow rate. The chromatographic separation of lipase was achieved from a binary mixture of lipase:bovine serum albumin (BSA) and lipase:lysozyme, and was also achieved from triple‐mixture of lipase:lysozyme:BSA by using fast protein liquid chromatography. Finally, lipase purification was performed from Yarrowia lipolytica cell extract used as a natural source. These studies have shown that the hydrophobic cryogel has good chromatographic performance for the separation and purification of lipase not only from aqueous solution, but also from cell extract as a natural source of lipase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:376–382, 2014  相似文献   

7.
Eleven flavoproteins from the old yellow enzyme family were found to catalyze the disproportionation (“dismutation”) of conjugated enones. Incomplete conversions, which were attributed to enzyme inhibition by the co‐product phenol could be circumvented via in situ co‐product removal by scavenging the phenol using the polymeric adsorbent MP‐carbonate. The optimized system allowed to reduce an alkene activated by ester groups in a “coupled‐substrate” approach via nicotinamide‐free hydrogen transfer with >90% conversion and complete stereoselectivity. Biotechnol. Bioeng. 2013;110: 3085–3092. © 2013 The Authors. Biotechnology and Bioengineering Published by Willey Periodicals, Inc.  相似文献   

8.
In situ product crystallization was investigated for solid product crystals that were obtained during fermentation. The model reaction was the asymmetric reduction of 4-oxoisophorone (OIP) using baker's yeast (S. cerevisiae) as a biocatalyst. The target product was 6R-dihydro-oxoisophorone (DOIP), also known as levodione, a key intermediate in carotenoid synthesis. DOIP was degraded by baker's yeast mainly to (4S,6R)-actinol, an unwanted byproduct in the process. Actinol formation reached up to 12.5% of the initial amount of OIP in the reactor during a batch process. However, better results were obtained when the dissolved DOIP concentration was controlled using an integrated fermentation-crystallization process because: (a) actinol formation was reduced to 4%; and (b) DOIP crystal formation in the reactor was avoided. DOIP productivity was improved by 50% and its selectivity was raised from 87% to 96% relative to the batch process. In the integrated process, most of the product was recovered as pure crystals; this may already minimize, if not eliminate, the need for organic solvents in the final purification steps. An almost sixfold reduction in biocatalyst consumption per kilogram product was achieved, which also can contribute to the minimization of waste streams.  相似文献   

9.
Extractive fermentation (or in situ product removal (ISPR)) is an operational method used to combat product inhibition in fermentations. To achieve ISPR, different separation techniques, modes of operation and physical reactor configurations have been proposed. However, the relative paucity of industrial application necessitates continued investigation into reactor systems. This article outlines a bioreactor designed to facilitate in situ product extraction and recovery, through adapting the reaction volume to include a settler and solvent extraction and recycle section. This semipartition bioreactor is proposed as a new mode of operation for continuous liquid‐liquid extractive fermentation. The design is demonstrated as a modified bench‐top fermentation vessel, initially analysed in terms of fluid dynamic studies, in a model two‐liquid phase system. A continuous abiotic simulation of lactic acid (LA) fermentation is then demonstrated. The results show that mixing in the main reaction vessel is unaffected by the inserted settling zone, and that the size of the settling tube effects the maximum volumetric removal rate. In these tests the largest settling tube gave a potential continuous volumetric removal rate of 7.63 ml/min; sufficiently large to allow for continuous product extraction even in a highly productive fermentation. To demonstrate the applicability of the developed reactor, an abiotic simulation of a LA fermentation was performed. LA was added to reactor continuously at a rate of 33ml/h, while continuous in situ extraction removed the LA using 15% trioctylamine in oleyl alcohol. The reactor showed stable LA concentration of 1 g/L, with the balance of the LA successfully extracted and recovered using back extraction. This study demonstrates a potentially useful physical configuration for continuous in situ extraction.  相似文献   

10.
This article presents a novel method for immobilization of active ingredients. The method is based on CO(2) aided active ingredient co-precipitation with glycinin, a biodegradable protein matrix from edible soybean protein. Glycinin precipitates abundantly under isoelectric conditions and serves as the matrix within which the active substance is trapped during the precipitation process. The enzyme lipase from Candida rugosa was successfully co-precipitated into the protein pellet to prove the principle. It was shown that the lipase within the co-precipitate retained lipase and esterase activity under different pH conditions. In some cases the activity was even higher than the activity of crude lipase, possibly due to the protective role of the matrix protein. Due to the retained lipase activity and food-grade quality of the binary precipitate, it has potential of being used in the food or pharmaceutical industry. Additional quality of the binary precipitate is the potentially significantly reduced downstream processing due to the fact that no organic solvents or precipitants were used in the precipitation process.  相似文献   

11.
After 24 h of chemical permeabilization with 20% (v/v) methanol at 25 °C, the amount of daidzein released from soybean seeds is 15 to 20% of the amount (0.0423 ± 0.0045 mg/g seed dry wt) obtained by physical grinding. With this chemical permeabilization condition, 70% of the permeabilized seeds are still able to germinate. The release of daidzein is enhanced to 33% with the addition of XAD-4 to 20% (v/v) methanol without affecting seed viability. © Rapid Science Ltd. 1998  相似文献   

12.
A three‐step purification of a unique lipase with halo‐, solvent‐, detergent‐, and thermo‐tolerance from Staphylococcus arlettae JPBW‐1 gave raise to a 27‐fold purification with a specific activity of 32.5 U/mg. The molecular weight of the purified lipase was estimated to be 45 kDa using SDS–PAGE, and its amino acid sequence was characterized using MALDI‐TOF‐MS analysis. The sequence obtained from MALDI‐TOF‐MS showed significant similarity with the capsular polysaccharide biosynthesis protein (CapD) of Staphylococcus aureus through comparative modeling approach using ROBETTA server. Identification of responsible fragments for homodimer formation was performed using comparative modeling and substrate binding domain through C‐terminus matching of this new lipase with the CapD of Staphylococcus aureus was executed. Thus, the experimental coupled molecular modeling postulated a structure–activity relationship of lipase from S. arlettae JPBW‐1, a potential candidate for detergent, leather, pulp, and paper industries.  相似文献   

13.
Kinetic data for lipase-catalyzed interesterification reactions between free fatty acids and triglycerides were collected and the dynamics of the interesterification reactions were successfully modeled using tow rate experssions requiring a total of five adjustable parameters. One rate expression describes the disappearance of the free fatty acid (octanoic or linolenic acid), and the second describes the rate of release of fatty acid residues from the triglycerides (olive oil or milkfat). This model is able to account for the effects of the concentration of all chemical species participating in interesterification throughout the entire reaction. When the data for both milkfat and olive oil were subjected to nonlinear regression analyses using the same mathematical model, the parameter estimates for both systems were comparable. In addition to reproducing the tendencies observed experimentally, simulations of the interesterification system under a variety of initial conditions provided insight into the effects of several reaction variables which could not be examined experimentally. Among the most significant findings of the simulation work are (1) there is a limit beyond which increasing the initial concentration of water produces no further increase in the initial rate of the interesterification reaction; (2) an increase in the initial concentration of lower glycerides produces a concomitant increase in the rate of the interesterification reaction; (3) the free fatty acids inhibit the rate of hydrolysis of the fatty acid residues of the triglycerides; (4) there is a limit beyond which increasing the initial concentration of triglycerides produces no significant increase in the rate of either the hydrolysis reaction or the interesterification reaction. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy.  相似文献   

15.
In this article, a kinetic model for the enzymatic transesterification of rapeseed oil with methanol using Callera? Trans L (a liquid formulation of a modified Thermomyces lanuginosus lipase) was developed from first principles. We base the model formulation on a Ping‐Pong Bi‐Bi mechanism. Methanol inhibition, along with the interfacial and bulk concentrations of the enzyme was also modeled. The model was developed to describe the effect of different oil compositions, as well as different water, enzyme, and methanol concentrations, which are relevant conditions needed for process evaluation, with respect to the industrial production of biodiesel. The developed kinetic model, coupled with a mass balance of the system, was fitted to and validated on experimental results for the fed‐batch transesterification of rapeseed oil. The confidence intervals of the parameter estimates, along with the identifiability of the model parameters were presented. The predictive capability of the model was tested for a case using 0.5% (wt. Enzyme/wt. Oil), 0.5% (wt. Water /wt. Oil) and feeding 1.5 times the stoichiometric amount of methanol in total over 24 h. For this case, an optimized methanol feeding profile that constrains the amount of methanol in the reactor was computed and the predictions experimentally validated. Monte‐Carlo simulations were then used to characterize the effect of the parameter uncertainty on the model outputs, giving a biodiesel yield, based on the mass of oil, of 90.8 ± 0.55 mass %. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1277–1290, 2014  相似文献   

16.
A three-dimensional structural model of the dichloromethane dehalogenase (DCMD) from Methylophilus sp. DM11 is constructed based on sequence similarities to the glutathione S-transferases (GSTs). To maximize sequence identity and minimize gaps in the alignment, a hybrid approach is used that takes advantage of the increased homology found between DM11 and domain I of the sheep blowfly θ class GST (residues 1–79) and domain II of the human α class GST (residues 81–222). The resulting structure has Cα root mean square deviations of 1.16 Å in domain I and 1.83 Å in domain II from the template GSTs, which compare well to those seen in other GST interclass comparisons. The model is further applied to explore the structural basis for substrate binding and catalysis. A conserved network of hydrogen bonds is described that binds glutathione to the G site, placing the thiol group in a suitable location for nucleophilic attack of dichloromethane. A mechanism is proposed that involves activation through a hydrogen bond interaction between Ser12 and glutathione, similar to that found in the θ-GSTs. The model also demonstrates how aromatic residues in the hydrophobic site (H site) could play a role in promoting catalysis: His116 and Trp117 are ideally situated to accept a growing negative charge on a chlorine of dichloromethane, stabilizing displacement. This scheme is consistent with experimental results of single-point mutations and comparisons with other GST structures and mechanisms. Proteins 28:217–226, 1997. © 1997 Wiley-Liss Inc.  相似文献   

17.
In this study, bioinformatics analysis, tissue distribution and developmental expression pattern of lipoprotein lipase (lpl) and hepatic lipase (lipc) in zebrafish Danio rerio are reported. In adult D. rerio, lpl was highly expressed in liver. This is remarkably different from the tissue expression pattern of LPL in mammals, which is not detected in the adult liver. The expression of lipc was liver specific, which is consistent with that in mammals. During embryogenesis, lpl mRNA was increased gradually in concentration from 0·5 hpf (hour post fertilization) to 6 dpf (days post fertilization), but lipc was not expressed at the early stage of the embryo until 3 dpf. In situ hybridization further displayed the expression pattern of lpl mainly restricted to the head region including cells surrounding the mouth opening, branchial arches, pectoral fin and lateral line neuromast, whereas lipc was mainly restricted to the liver and part of head regions including lens. This lays a foundation for further investigation of lpl or lipc function and evolution in fishes.  相似文献   

18.
Hydraulic characteristics of biological wastewater treatment systems were shown to affect bacterial state distributions and system performance through mathematical simulations. The term "state" is used here to mean the microbial storage product and biomass content of a bacterium. The traditional approach to simulating biological treatment processes assumes "lumped" (average) states, rather than accounting for variable states across bacterial populations. Distributed states were previously suggested as critical to enhanced biological phosphorus removal (EBPR), but the factors that cause distributed states were not evaluated. A primary driver for distributed state development is variable hydraulic experiences of bacteria as they cycle through completely mixed reactors, and so process characteristics that affect hydraulics were hypothesized to affect state distributions. Two design characteristics affecting system hydraulics were evaluated using a new distributed state simulation program (DisSimulator 1.0): total hydraulic residence time (HRT) and numbers of reactors in series. Distributed predictions consistently predicted worse EBPR performance than did the lumped approach. Increasing HRTs (with constant solids retention times) tended to increase state distributions, to increase the differences between lumped and distributed simulation predictions, and to decrease predicted EBPR performance. As the numbers of reactors in series increased, distributed predictions tended to converge with lumped simulation predictions. Distributed simulations tended to predict a greater benefit to using reactors in series than did lumped simulations. This work provides guidance for new strategies to improve EBPR by minimizing state distributions. The targeted hydraulic characteristics may be more important to EBPR than previously recognized due to their effects on distributed states.  相似文献   

19.
Interests in Acinetobacter haemolyticus lipases are showing an increasing trend concomitant with growth of the enzyme industry and the widening search for novel enzymes and applications. Here, we present a structural model that reveals the key catalytic residues of lipase KV1 from A. haemolyticus. Homology modeling of the lipase structure was based on the structure of a carboxylesterase from the archaeon Archaeoglobus fulgidus as the template, which has a sequence that is 58% identical to that of lipase KV1. The lipase KV1 model is comprised of a single compact domain consisting of seven parallel and one anti-parallel β-strand surrounded by nine α-helices. Three structurally conserved active-site residues, Ser165, Asp259, and His289, and a tunnel through which substrates access the binding site were identified. Docking of the substrates tributyrin and palmitic acid into the pH 8 modeled lipase KV1 active sites revealed an aromatic platform responsible for the substrate recognition and preference toward tributyrin. The resulting binding modes from the docking simulation correlated well with the experimentally determined hydrolysis pattern, for which pH 8 and tributyrin being the optimum pH and preferred substrate. The results reported herein provide useful insights into future structure-based tailoring of lipase KV1 to modulate its catalytic activity.  相似文献   

20.
Whole lyophilized cells of an Escherichia coli overexpressing the alcohol dehydrogenase (ADH-'A') from Rhodococcus ruber DSM 44541 were used for the asymmetric reduction of ketones to secondary alcohols. The recycling of the required nicotinamide cofactor (NADH) was achieved in a coupled-substrate process. In the course of the reaction the ketone is reduced to the alcohol and the hydrogen donor 2-propanol is oxidized to acetone by one enzyme. This leads to a thermodynamic equilibrium between all four components determining the maximum achievable conversion. To overcome this limitation an in situ product removal technique (ISPR) for the application with whole cells was developed. In this method the most volatile compound is separated from the reaction vessel by an air flow resulting in a shift of the equilibrium towards the desired secondary alcohol. The so-called stripping process represents a simple and efficient method to overcome the thermodynamic limitation in biocatalytic reactions. Employing this method, the conversion of selected biotransformations was increased up to completeness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号