共查询到20条相似文献,搜索用时 0 毫秒
1.
Catalytic activities of cytochrome P450 2B4 lacking NH2-terminal amino acids 2-27 (wt Delta2B4) and that of truncated 2B4 containing a Pro to Ser mutation at position 221 were examined in a system supported by cumene hydroperoxide. Demethylation activities of either truncated 2B4 with N-methylaniline, N,N-dimethylaniline, and d-benzphetamine were lower than those of liver microsomal 2B4, whereas the rate of 1-phenylethanol oxidation to acetophenone catalyzed by liver microsomal and truncated 2B4 enzymes was nearly the same. The Km and Vmax values for cumene hydroperoxide in the demethylation of N-methylaniline by wt Delta2B4 were 20% and 28%, respectively, of those obtained for 2B4. The reaction with wt Delta2B4 displayed a lesser dependence on phospholipid than did that with 2B4, and a complex relationship between activity and substrate concentration. The results suggest that the NH2-terminal region contributes to interaction of oxidant, substrate, and phospholipid in cumene hydroperoxide-supported reactions catalyzed by cytochrome P450 2B4. 相似文献
2.
Experiments demonstrating that cytochrome (cyt) b5 inhibits the activity of cytochrome P450 2B4 (cyt P450 2B4) at higher concentrations suggested that cyt b5 was occupying the cyt P450 reductase-binding site on cyt P450 2B4 and preventing the reduction of ferric cyt P450 (Zhang, H., Im, S.-C., and Waskell, L. (2007) J. Biol. Chem. 282, 29766-29776). In this work experiments were undertaken with manganese-containing cyt b5 (Mn-cyt b5) to test this hypothesis. Because Mn-cyt b5 does not undergo oxidation state changes under our experimental conditions, interpretation of the experimental results was unambiguous. The rate of electron transfer from cyt P450 reductase to ferric cyt P450 2B4 was decreased by Mn-cyt b5 in a concentration-dependent manner. Moreover, reduction of cyt P450 2B4 by cyt P450 reductase was incomplete in the presence of Mn-cyt b5. At a Mn-cyt b(5):cyt P450 2B4:cyt P450 reductase molar ratio of 5:1:1, the rate of reduction of ferric cyt P450 was decreased by 10-fold, and only 30% of the cyt P450 was reduced, whereas 70% remained oxidized. It could be demonstrated that Mn-cyt b5 had its effect by acting on cyt P450, not the reductase, because the reduction of cyt c by cyt P450 reductase in the presence of Mn-cyt b5 was not effected. Furthermore, under steady-state conditions in the cyt P450 reconstituted system, Mn-cyt b5, which lacks the ability to reduce oxyferrous cyt P450 2B4, was unable to stimulate the activity of cyt P450. Mn-cyt b5 only inhibited the cyt P450 2B4 activity. In conjunction with site-directed mutagenesis studies and experiments that strongly suggested that cyt b5 competed with cyt P450 reductase for binding to cyt P450, the current investigation demonstrates unequivocally that cyt b5 inhibits the activity of cyt P450 2B4 by preventing cyt P450 reductase from binding to cyt P450, a prerequisite for electron transfer from cyt P450 reductase to cyt P450 and catalysis. 相似文献
3.
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation. 相似文献
4.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407. 相似文献
5.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R. 相似文献
6.
An immobilized system was developed to detect interactions of human cytochromes P450 (P450) with the accessory proteins NADPH-P450 reductase and cytochrome b(5) (b(5)) using an enzyme-linked affinity approach. Purified enzymes were first bound to wells of a polystyrene plate, and biotinylated partner enzymes were added and bound. A streptavidin-peroxidase complex was added, and protein-protein binding was monitored by measuring peroxidase activity of the bound biotinylated proteins. In a model study, we examined protein-protein interactions of Pseudomonas putida putidaredoxin (Pdx) and putidaredoxin reductase (PdR). A linear relationship (r(2)=0.96) was observed for binding of PdR-biotin to immobilized Pdx compared with binding of Pdx-biotin to immobilized PdR (the estimated K(d) value for the Pdx.PdR complex was 0.054muM). Human P450 2A6 interacted strongly with NADPH-P450 reductase; the K(d) values (with the reductase) ranged between 0.005 and 0.1muM for P450s 2C19, 2D6, and 3A4. Relatively weak interaction was found between holo-b(5) or apo-b(5) (devoid of heme) with NADPH-P450 reductase. Among the rat, rabbit, and human P450 1A2 enzymes, the rat enzyme showed the tightest interaction with b(5), although no increases in 7-ethoxyresorufin O-deethylation activities were observed with any of the P450 1A2 enzymes. Human P450s 2A6, 2D6, 2E1, and 3A4 interacted well with b(5), with P450 3A4 yielding the lowest K(d) values followed by P450s 2A6 and 2D6. No appreciable increases in interaction between human P450s with b(5) or NADPH-P450 reductase were observed when typical substrates for the P450s were included. We also found that NADPH-P450 reductase did not cause changes in the P450.substrate K(d) values estimated from substrate-induced UV-visible spectral changes with rabbit P450 1A2 or human P450 2A6, 2D6, or 3A4. Collectively, the results show direct and tight interactions between P450 enzymes and the accessory proteins NADPH-P450 reductase and b(5), with different affinities, and that ligand binding to mammalian P450s did not lead to increased interaction between P450s and the reductase. 相似文献
7.
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)-CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s(-1). Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR-CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR-CYP3A4 complex can dissociate and reform between the first and second electron transfers. 相似文献
8.
Namandjé N. Bumpus 《Journal of inorganic biochemistry》2010,104(4):485-691
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in 18O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many 18O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase. 相似文献
9.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. 相似文献
10.
In order to identify the cytochrome P450-binding domain for NADPH-cytochrome P450 reductase, synthetic peptide mimics of predicted surface regions of rat cytochrome P450 2B1 were constructed and evaluated for inhibition of the P450-reductase interaction. A peptide corresponding to residues 116–134, which includes the C helix, completely inhibited reductase-mediated benzphetamine demethylation by purified P450 2B1. Replacement of Arg-125 by Glu yielded a noninhibitory peptide, suggesting that this residue significantly contributes to the reductase-P450 interaction. Additional P450 peptides were prepared which correspond to combinations of regions distant in primary sequence, but predicted to be spatially proximate. A peptide derived from segments of the C and L helices was a more potent inhibitor than peptides derived from either segment alone. This topographically designed peptide not only inhibited P450 2B1 in its purified form, but also when membrane-bound in rat liver microsomes. The peptide also inhibited microsomal aryl hydrocarbon hydroxylase, aniline hydroxylase, and erythromycin demethylase activities derived from other P450s. These results indicate that the C and L helices contribute to a reductase-binding site common to multiple P450s, and present a peptide mimic for this region that is useful for inhibition of P450-mediated microsomal activities. 相似文献
11.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献
12.
A fluorescent probe, N-(1-anilinonaphth-4-yl)-maleimide (ANM), was specifically labeled to SH group(s) in the hydrophilic moiety of NADPH-cytochrome P-450 reductase at a ratio of 1 +/- 0.1 ANM/mol of protein. The ANM-labeled reductase and P-450 were reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles in which all of the enzymes were functionally active. The reconstitution of the mixed-function oxidase system was found to be strongly dependent on both the lipid to protein molar ratio and phospholipid composition. The interactions of ANM-labeled reductase with P-450 in proteoliposomes were investigated by perturbation of the fluorescence of ANM. Upon incorporation of P-450 into the phospholipids vesicles (ANM-reductase/P-450/lipids identical to 1:1.4:800), a significant decrease of total fluorescence intensity and slight increase of emission anisotropy of ANM were observed. In the average fluorescence lifetime of ANM bound with reductase, an appreciable change was shown between the absence and presence of P-450 in the vesicles. These data provide clear evidence that significant molecular interactions occur between the two proteins in a membranous reconstituted system. 相似文献
13.
We have expressed in Escherichia coli a cDNA encoding rabbit liver cytochrome P-450IIE1, the ethanol-inducible P-450. The expressed P-450 is located primarily in the bacterial inner cell membrane and comprises 3% of the E. coli total membrane protein. The partially purified cytochrome exhibits a reduced CO difference spectrum with a maximum at 452 nm, characteristic of P-450IIE1, and solubilized membranes or partially purified P-450 preparations reconstituted with NADPH-cytochrome P-450 reductase and phosphatidylcholine catalyze the deethylation of N-nitrosodiethylamine with a turnover number equal to that of purified liver P-450IIE1 (approximately 4.5 nmol/min/nmol of P-450). A modified IIE1 cDNA that encodes a protein lacking amino acids 3-29, a proposed membrane anchor for cytochrome P-450, was also expressed in E. coli and, unexpectedly, the shortened protein was also found to be predominantly located in the bacterial inner membrane rather than the cytosol. Like the full-length protein, this truncated cytochrome has a reduced CO difference spectrum characteristic of P-450IIE1 and is fully active in the deethylation of N-nitrosodiethylamine. These results demonstrate that the NH2-terminal hydrophobic segment is not solely responsible for attachment to the membrane and evidently is not required for proper protein folding or catalytic activity. 相似文献
14.
The pre-steady-state reduction of cytochrome P450 (P450) 2B4 by P450 reductase (reductase) was modeled by assuming that an equilibrium between three catalytic conformers of P450 regulates the multi-phasic reduction of the enzyme. This model was compared to a model of reduction involving a minimum number of phases. Based on several criteria, the former model seems to provide an improved fit to the reduction data. Substrates were divided into two groups based on their effects at different concentrations of reductase. Surprisingly, in the presence of some substrates (group 1) but not others (group 2), the rate of reduction was actually slower with an excess of reductase than with equimolar reductase and P450. Presumably, oxidized reductase binds differently to P450 than reduced reductase. A schematic model based on two sites of interaction between reductase and P450 2B4 is offered to explain the unusual reduction kinetics with the two different groups of substrates. 相似文献
15.
Inhibitory effects of Cu(2+) on the cytochrome P450 (P450)-catalyzed reactions of liver microsomes and reconstituted systems containing purified P450 and NADPH-P450 reductase (NPR) were seen. However, Zn(2+), Mg(2+), Mn(2+), Ca(2+), and Co(2+) had no apparent effects on the activities of microsomal P450s. Cu(2+) inhibited the reactions catalyzed by purified P450s 1A2 and 3A4 with IC(50) values of 5.7 and 8.4 microM, respectively. Cu(2+) also inhibited reduction of cytochrome c by NPR (IC(50) value of 5.8 microM). Copper caused a decrease in semiquinone levels of NPR, although it did not disturb the rate of formation of semiquinone. P450 reactions supported by an oxygen surrogate, tert-butyl hydroperoxide, instead of NPR and NADPH, were inhibited by the presence of Cu(2+). The results indicate that Cu(2+) inhibits the P450-catalyzed reactions by affecting both P450s and NPR. It was also found that the inhibition of catalytic activities of P450s by Cu(2+) involves overall conformational changes of P450s and NPR, investigated by CD and intrinsic fluorescence spectroscopy. These results suggest that the inhibitory effect of Cu(2+) on the P450-catalyzed reactions may come from the inability of an efficient electron transfer from NPR to P450 and also the dysfunctional conformation of NPR and P450. 相似文献
16.
M A Peyronneau J P Renaud G Truan P Urban D Pompon D Mansuy 《European journal of biochemistry》1992,207(1):109-116
Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Identification and characterization of an NADPH-cytochrome P450 reductase derived peptide involved in binding to cytochrome P450 总被引:1,自引:0,他引:1
The amino acids of cytochrome P450 reductase involved in the interaction with cytochrome P450 were identified with a differential labeling technique. The water-soluble carbodiimide EDC (1-ethyl-3-[3- (dimethylamino)propyl]-carbodiimide) was used with the nucleophile methylamine to modify carboxyl residues. When the modification was performed in the presence of cytochrome P450, there was no inhibition in the ability of the modified reductase to bind to cytochrome P450. However, subsequent modification of the reductase in the absence of cytochrome P450 caused a fourfold increase in the Km and an 80% decrease in kcat/Km (relative to the reductase modified in the first step), for the interaction with cytochrome P450. These effects are attributed to the modification of approximately 3.2 mol of carboxyl residues per mole of reductase. Tryptic peptides generated from the modified reductase were purified by reverse phase high-performance liquid chromatography and characterized. Amino acid sequencing and analysis suggest that the peptide which contains approximately 40% of the labeled carboxyl residues corresponds to amino acid residues 109-130 of rat liver NADPH-cytochrome P450 reductase. One or more of the seven carboxyl containing amino acids within this peptide is presumably involved in the interaction with cytochrome P450. 相似文献
18.
I P Kanaeva I R Dedinskii E D Skotselyas A G Krainev I V Guleva I F Sevryukova Y M Koen G P Kuznetsova G I Bachmanova A I Archakov 《Archives of biochemistry and biophysics》1992,298(2):395-402
Oligomers and monomers of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) isolated from the liver microsomes of phenobarbital-treated rabbits were examined for physicochemical properties and catalytic activities. As measured using laser correlation spectroscopy the particle sizes of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers were 14.8 +/- 1.7 and 19.2 +/- 1.4 nm, respectively. Twenty-four-hour incubation with Emulgen 913 at 4 degrees C at a molar ratio of 1:100 led to the monomerization of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers, the particle sizes diminishing to 6.1 +/- 1.3 and 5.2 +/- 0.4 nm, respectively. The thermal stability of NADPH-cytochrome P450 reductase monomers was the same as that of oligomers, whereas cytochrome P450 LM2 monomers were less thermostable than oligomers and cytochrome P450 in microsomes. Similar to cytochrome P450 LM2 oligomers and the microsomal hemoprotein, cytochrome P450 LM2 monomers formed complexes with type I and II substrates, but with Kd values higher than those of microsomes and cytochrome P450 LM2 oligomers. Kinetic parameters (Vmax and Km) of H2O2- and cumene hydroperoxide-dependent oxidation of benzphetamine and aniline in the presence of cytochrome P450 LM2 oligomers, monomers, and microsomes were determined. Peroxidase activities of the oligomers and monomers were the same, but were lower than those of microsomes. Thus the substitution of protein-protein interactions in cytochrome P450 LM2 oligomers with protein-detergent interactions in the monomers did not influence the catalytic properties of the hemoprotein. 相似文献
19.
Attempts to covalently link NADPH-cytochrome P450 reductase to cytochrome P450 2B4 using a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylisopropyl)carbodiimide, were unsuccessful, despite the fact that under the same conditions about 30% of P450 2B4 could be covalently linked with cytochrome b5 in a functionally active complex (Tamburini, P. P., and Schenkman, J. B. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 11-15). This suggested that the functional electron transfer complex between P450 2B4 and reductase is not stabilized by electrostatic forces. Raising the ionic strength of the medium is disruptive to salt bridges and was used to further test whether P450 2B4 and the reductase form charge-pairing complexes. Instead of inhibiting electron transfer, high ionic strength increased the apparent fast phase rate constant and the fraction of P450 2B4 reduced in the fast phase. The possibility that electron transfer between NADPH-cytochrome P450 reductase and P450 2B4 is diminished by charge repulsion was examined. Consistent with this hypothesis, the Km of P450 2B4 for reductase was decreased 26-fold by increasing the ionic strength from 10 to 100 mM sodium phosphate without affecting the Vmax. The rate of benzphetamine N-demethylation also was increased by elevation of the ionic strength. Electron transfer from the reductase to other charged redox acceptors, e.g. cytochrome c and ferricyanide, was also stimulated by increased ionic strength. However, no similar stimulation was observed with the uncharged acceptor 1,4-benzoquinone. Polylysine, a polypeptide that binds to anionic sites, enhanced electron transfer from NADPH to ferricyanide and the apparent fast phase of reduction of cytochrome P450. The results are consistent with the hypothesis that charges on NADPH-cytochrome P450 reductase and cytochrome P450 decrease the stability of the electron transfer complex. 相似文献
20.
A. V. Ivanov A. T. Kopylov V. G. Zgoda I. Yu. Toropygin E. V. Khryapova Yu. D. Ivanov 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(4):361-371
The interaction sites for protein partners, cytochrome P450 2B4 (d-2B4) and NADPH: cytochrome P450 reductase (d-Fp), have been identified. These proteins form complexes during their functioning. Nonspecific covalent cross-linking of the d-2B4 complexes with d-Fp in the Emulgen 913 monomerized system was achieved by 4,4′- dithiobis-phenyl azide. Covalently cross-linked peptides of this complex were identified by ESI-MS/MS. Several binding sites have been identified for these proteins. Based on these sites a model for intermolecular interaction between these proteins has been proposed. This model includes 5 contact sites on d-2B4 for d-Fp (stabilized by the cross-linker); these include the following pairs of corresponding peptides of d-2B4 and d-Fp: 1) d-2B4324–336 and d-Fp570–585; 2) d-2B4423–433 and d-Fp102–109; 3) d-2B4327–336 and d Fp452–464; 4) d-2B4192–197 and d-Fp456–464; 5) d-2B4134–139 and d-Fp406–425. In the two last cases d-Fp peptides are located in the interdomain cleft and stabilize the protein-protein complex via the cross-linker and so the d 2B4/d-Fp complex formation by these sites may involve amino acid residues of the peptides d-Fp456–464 and d-Fp406–425, which surround the interdomain cleft. 相似文献