首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mapping of mutA and mutC mutator alleles to the glyV and glyW glycine tRNA genes, respectively, and the subsequent discovery that the mutA phenotype is abolished in a DeltarecA strain raise the possibility that asp --> gly misinsertion may induce a novel mutagenic pathway. The recA requirement suggests three possibilities: (i) the SOS mutagenesis pathway is activated in mutA cells; (ii) loss of recA function interferes with mutA-promoted asp --> gly misinsertion; or (iii) a hitherto unrecognized recA-dependent mutagenic pathway is activated by translational stress. By assaying the expression levels of a reporter plasmid bearing a umuC :lacZ fusion, we show that the SOS regulon is not in a derepressed state in mutA cells. Neither overexpression of the lexA gene through a multicopy plasmid nor replacement of the wild-type lexA allele with the lexA1[Ind-] allele interferes with the expression of the mutA phenotype. The mutA phenotype is unaffected in cells defective for dinB, as shown here, and is unaffected in cells defective for umuD and umuC genes, as shown previously. We show that mutA-promoted asp --> gly misinsertion occurs in recA- cells and, therefore, the requirement for recA is 'downstream' of mistranslation. Finally, we show that the mutA phenotype is abolished in cells deficient for recB, suggesting that cellular recombination functions may be required for the expression of the mutator phenotype. We propose that translational stress induces a previously unrecognized mutagenic pathway in Escherichia coli.  相似文献   

2.
miaA mutants, which contain A-37 instead of the ms(2)i(6)A-37 hypermodification in their tRNA, show a moderate mutator phenotype leading to increased GC-->TA transversion. We show that the miaA mutator phenotype is dependent on recombination functions similar to, but not exactly the same as, those required for translation stress-induced mutagenesis.  相似文献   

3.
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.  相似文献   

4.
Biochemistry of homologous recombination in Escherichia coli.   总被引:51,自引:0,他引:51       下载免费PDF全文
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.  相似文献   

5.
DNA cloning by homologous recombination in Escherichia coli   总被引:18,自引:0,他引:18  
The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency.  相似文献   

6.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

7.
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3′-5′ exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3′ overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.  相似文献   

8.
rec genes and homologous recombination proteins in Escherichia coli   总被引:19,自引:0,他引:19  
A J Clark 《Biochimie》1991,73(4):523-532
The twenty-five years since the first published report of recA mutants in Escherichia coli has seen the identification of more than 12 other recombination genes. The genes are usually grouped into three pathways named RecBCD, RecE and RecF for prominent genes which function in each. A proposal is made here that there are two RecF pathways, one sensitive and one resistant to exonuclease I, the SbcB enzyme. Five methods of grouping the genes functionally are discussed: 1) by enzyme activity, 2) by common indirect suppressor, 3) by common phenotype, 4) by common regulation and 5) by epistasis. Five classes of enzyme activities implicated in recombination are discussed according to their involvement in presynapsis, synapsis or postsynapsis: 1) nucleases 2) helicases 3) DNA-binding proteins 4) topoisomerases and 5) ligases. Plausible presynaptic steps for the RecBCD, RecF (SbcBS) and RecE pathways show the common feature of generating 3'-terminated single-stranded DNA (ssDNA). On this ssDNA it is proposed that a RecA protein filament is generated discontinuously. This implies the existence of nucleation and possibly measurement and 3' end protection proteins. Specific proposals are made for which recombination genes might encode such products. Finally the generality of the RecA-ssDNA-filament mechanism of synapsis in the cellular biological world is discussed.  相似文献   

9.
The RecA protein is a central homologous recombination enzyme in the bacterial cell. Forming a right-handed filament on ssDNA, RecA provides for a homology search between two DNA molecules and homologous strand exchange. RecA protects the cell from ionizing radiation and UV light and is capable of completing recombination during normal cell growth. Several mutant and natural RecA forms have a higher recombination potential in vitro and in vivo as compared with the wild-type Escherichia coli RecA, causing hyperrecombination. Recombinational hyperactivity of RecA depends to a great extent on the filamentation dynamics and DNA transferase properties, which may depend not only on specific amino acid substitutions in RecA, but also by defects in cell enzymatic machinery, including RecO, RecR, RecF, RecX, DinI, SSB, and PsiB. The functions of these proteins are currently known at the molecular level, while their roles in hyperrecombination are still incompletely understood. An increase in recombination in vivo is not always advantageous for the cell and is therefore limited by various mechanisms. In addition to the limitations imposed by cell enzymatic machinery, genomic rearrangements aimed at inhibiting the expression of hyperactive RecA are fixed through cell generations via selection against hyperrecombination. The mechanisms regulating hyperactive RecA forms in several model systems are considered.  相似文献   

10.
11.
12.
I used a chlC-lac operon fusion to study regulatory mutations which affect nitrate reductase expression in Escherichia coli. A NarL- mutant apparently lacks a nitrate-specific positive regulatory component. Furthermore, an fnr (nirR) mutation prevented enzyme induction under any conditions. These data are consistent with a two-step, positive control model for nitrate reductase regulation.  相似文献   

13.
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.  相似文献   

14.
ABSTRACT: BACKGROUND: Escherichia coli is an important species of bacteria that can live as a harmless inhabitantof the guts of many animals, as a pathogen causing life-threatening conditions or freely inthe non-host environment. This diversity of lifestyles has made it a particular focus ofinterest for studies of genetic variation, mainly with the aim to understand how acommensal can become a deadly pathogen. Many whole genomes of E. coli have beenfully sequenced in the past few years, which offer helpful data to help understand how thisimportant species evolved. RESULTS: We compared 27 whole genomes encompassing four phylogroups of Escherichia coli (A,B1, B2 and E). From the core-genome we established the clonal relationships between theisolates as well as the role played by homologous recombination during their evolutionfrom a common ancestor. We found strong evidence for sexual isolation between three lineages (A+B1, B2, E), which could be explained by the ecological structuring of E. coliand may represent on-going speciation. We identified three hotspots of homologousrecombination, one of which had not been previously described and contains the aroCgene, involved in the essential shikimate metabolic pathway. We also described the roleplayed by non-homologous recombination in the pan-genome, and showed that thisprocess was highly heterogeneous. Our analyses revealed in particular that the genomes ofthree enterohaemorrhagic (EHEC) strains within phylogroup B1 have converged fromoriginally separate backgrounds as a result of both homologous and non-homologousrecombination. CONCLUSIONS: Recombination is an important force shaping the genomic evolution and diversification ofE. coli, both by replacing fragments of genes with an homologous sequence and also byintroducing new genes. In this study, several non-random patterns of these events wereidentified which correlated with important changes in the lifestyle of the bacteria, andtherefore provide additional evidence to explain the relationship between genomicvariation and ecological adaptation.  相似文献   

15.
We have used GET Recombination, an inducible homologous recombination system for Escherichia coli, to insert one of the most common thalassaemia mutations into the intact β-globin locus in a second generation BAC vector. We first inserted a PCR fragment carrying the tetracycline resistance gene (TetR) into the β-globin gene. All recombinant clones examined contained the TetR gene at the correct target site. Next, a PCR fragment with the IVS I-110 G→A splicing mutation but no selectable marker was used to replace the TetR gene in a second round of GET Recombination. Recombinant clones were selected by plating on medium containing chlorotetracycline and fusaric acid. Although counterselection for the TetR gene is not very efficient, four recombinant colonies with the IVS I-110 mutation were identified among 480 clones screened. Analysis of the recombinant clones did not show any other modifications or rearrangements. Thus the TetR gene can be used in combination with GET Recombination to introduce point mutations and other modifications in BACs without leaving behind any operational sequences, in order to generate accurate cell and transgenic mouse models for various diseases.  相似文献   

16.
Nitric oxide (NO*) is involved in neurotransmission, inflammation, and many other biological processes. Exposure of cells to NO* leads to DNA damage, including formation of deaminated and oxidized bases. Apurinic/apyrimidinic (AP) endonuclease-deficient cells are sensitive to NO* toxicity, which indicates that base excision repair (BER) intermediates are being generated. Here, we show that AP endonuclease-deficient cells can be protected from NO* toxicity by inactivation of the uracil (Ung) or formamidopyrimidine (Fpg) DNA glycosylases but not by inactivation of a 3-methyladenine (AlkA) DNA glycosylase. These results suggest that Ung and Fpg remove nontoxic NO*-induced base damage to create BER intermediates that are toxic if they are not processed by AP endonucleases. Our next goal was to learn how Ung and Fpg affect susceptibility to homologous recombination. The RecBCD complex is critical for repair of double-strand breaks via homologous recombination. When both Ung and Fpg were inactivated in recBCD cells, survival was significantly enhanced. We infer that both Ung and Fpg create substrates for recombinational repair, which is consistent with the observation that disrupting ung and fpg suppressed NO*-induced recombination. Taken together, a picture emerges in which the action of DNA glycosylases on NO*-induced base damage results in the accumulation of BER intermediates, which in turn can induce homologous recombination. These studies shed light on the underlying mechanism of NO*-induced homologous recombination.  相似文献   

17.
Despite recent technical improvements, the construction of recombinant adenovirus vectors remains a time-consuming procedure which requires extensive manipulations of the viral genome in both Escherichia coli and eukaryotic cells. This report describes a novel system based on the cloning and manipulation of the full-length adenovirus genome as a stable plasmid in E. coli, by using the bacterial homologous recombination machinery. The efficiency and flexibility of the method are illustrated by the cloning of the wild-type adenovirus type 5 genome, the insertion of a constitutive promoter upstream from the E3 region, the replacement of the E1 region by an exogenous expression cassette, and the deletion of the E1 region. All recombinant viral DNAS were shown to be fully infectious in permissive cells, and the modified E3 region or the inserted foreign gene was correctly expressed in the infected cells.  相似文献   

18.
Even a partial loss of function of human RecQ helicase analogs causes adverse effects such as a cancer-prone Werner, Bloom or Rothmund-Thompson syndrome, whereas a complete RecQ deficiency in Escherichia coli is not deleterious for a cell. We show that this puzzling difference is due to different mechanisms of DNA double strand break (DSB) resection in E. coli and humans. Coupled helicase and RecA loading activities of RecBCD enzyme, which is found exclusively in bacteria, are shown to be responsible for channeling recombinogenic 3' ending tails toward productive, homologous and away from nonproductive, aberrant recombination events. On the other hand, in recB1080/recB1067 mutants, lacking RecBCD's RecA loading activity while preserving its helicase activity, DSB resection is mechanistically more alike that in eukaryotes (by its uncoupling from a recombinase polymerization step), and remarkably, the role of RecQ also becomes akin of its eukaryotic counterparts in a way of promoting homologous and suppressing illegitimate recombination. The sickly phenotype of recB1080 recQ mutant was further exacerbated by inactivation of an exonuclease I, which degrades the unwound 3' tail. The respective recB1080 recQ xonA mutant showed poor viability, DNA repair and homologous recombination deficiency, and very increased illegitimate recombination. These findings demonstrate that the metabolism of the 3' ending overhang is a decisive factor in tuning the balance of homologous and illegitimate recombination in E. coli, thus highlighting the importance of regulating DSB resection for preserving genome integrity. recB mutants used in this study, showing pronounced RecQ helicase and exonuclease I dependence, make up a suitable model system for studying mechanisms of DSB resection in bacteria. Also, these mutants might be useful for investigating functions of the conserved RecQ helicase family members, and congruently serve as a simpler, more defined model system for human oncogenesis.  相似文献   

19.
We report here modifications of human beta-globin PAC clones by homologous recombination in Escherichia coli DH10B, utilising a plasmid temperature sensitive for replication, the recA gene and a wild-type copy of the rpsL gene which allows for an efficient selection for plasmid loss in this host. High frequencies of recombination are observed even with very small lengths of homology and the method has general utility for introducing insertions, deletions and point mutations. No rearrangements were detected with the exception of one highly repetitive genomic sequence when either the E.COLI: RecA- or the lambdoid phage encoded RecT and RecE-dependent recombination systems were used.  相似文献   

20.
We developed a method for the reconstruction of a 100 kb DNA fragment into a bacterial artificial chromosome (BAC). The procedure makes use of iterative rounds of homologous recombination in Escherichia coli. Smaller, overlapping fragments of cloned DNA, such as cosmid clones, are required. They are transferred first into a temperature-sensitive replicon and then into the BAC of choice. We demonstrated the usefulness of this procedure by assembling a 90 kb genomic segment into an E.coli-STREPTOMYCES: artificial chromosome (ESAC). Using this procedure, ESACs are easy to handle and remarkably more stable than the starting cosmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号