首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spliceosomal (pre-mRNA) introns have previously been found in eukaryotic protein-coding genes, in the small nuclear RNAs of some fungi, and in the small- and large-subunit ribosomal DNA genes of a limited number of ascomycetes. How the majority of these introns originate remains an open question because few proven cases of recent and pervasive intron origin have been documented. We report here the widespread occurrence of spliceosomal introns (69 introns at 27 different sites) in the small- and large-subunit nuclear-encoded rDNA of lichen-forming and free-living members of the Ascomycota. Our analyses suggest that these spliceosomal introns are of relatively recent origin, i.e., within the Euascomycetes, and have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into rRNAs. The spliceosome itself, and not an external agent (e.g., transposable elements, group II introns), may have given rise to these introns. A nonrandom sequence pattern was found at sites flanking the rRNA spliceosomal introns. This pattern (AG-intron-G) closely resembles the proto-splice site (MAG-intron-R) postulated for intron insertions in pre-mRNA genes. The clustered positions of spliceosomal introns on secondary structures suggest that particular rRNA regions are preferred sites for insertion through reverse-splicing.  相似文献   

2.
More than 1200 introns have been documented at over 150 unique sites in the small and large subunit ribosomal RNA genes (as of February 2002). Nearly all of these introns are assigned to one of four main types: group I, group II, archaeal and spliceosomal. This sequence information has been organized into a relational database that is accessible through the Comparative RNA Web Site (http://www.rna.icmb.utexas.edu/) While the rRNA introns are distributed across the entire tree of life, the majority of introns occur within a few phylogenetic groups. We analyzed the distributions of rRNA introns within the three-dimensional structures of the 30S and 50S ribosomes. Most sites in rRNA genes that contain introns contain only one type of intron. While the intron insertion sites occur at many different coordinates, the majority are clustered near conserved residues that form tRNA binding sites and the subunit interface. Contrary to our expectations, many of these positions are not accessible to solvent in the mature ribosome. The correlation between the frequency of intron insertions and proximity of the insertion site to functionally important residues suggests an association between intron evolution and rRNA function.  相似文献   

3.
Ericoid mycorrhizal fungi form symbioses with the roots of members of the Ericales. Although only two genera have been identified in culture, the taxonomic diversity of ericoid symbionts is certainly wider. Genetic variation among 40 ericoid fungal isolates was investigated in this study. PCR amplification of the nuclear small-subunit ribosomal DNA (SSU rDNA) and of the internal transcribed spacer (ITS), followed by sequencing, led to the discovery of DNA insertions of various sizes in the SSU rDNA of most isolates. They reached sizes of almost 1,800 bp and occurred in up to five different insertion sites. Their positions and sizes were generally correlated with morphological and ITS-RFLP grouping of the isolates, although some insertions were found to be optional among isolates of the same species, and insertions were not always present in all SSU rDNA repeats within an isolate. Most insertions were identified as typical group I introns, possessing the conserved motifs characteristic of this group. However, other insertions lack these motifs and form a distinct group that includes other fungal ribosomal introns. Alignments with almost 70 additional sequences from fungal nuclear SSU rDNA introns indicate that introns inserted at the same site along the rDNA gene are generally homologous, but they also suggest the possibility of some horizontal transfers. Two of the ericoid fungal introns showed strong homology with a conserved motif found in endonuclease genes from nuclear rDNA introns.  相似文献   

4.
Although hypotheses have been proposed and developed to interpret the origins and functions of introns, substantial controversies remain about the mechanism of intron evolution. The availability of introns in the intermediate state is quite helpful for resolving this debate. In this study, a new strain of diatom (denominated as DB21‐1) was isolated and identified as Olifantiella sp., which possesses multiple types of 18S rDNAs (obtained from genomic DNA; lengths ranged from 2,056 bp to 2,988 bp). Based on alignments between 18S rDNAs and 18S rRNA (obtained from cDNA; 1,783 bp), seven intron insertion sites (IISs) located in the 18S rDNA were identified, each of which displayed the polymorphism of intron presence/absence. Specific primers around each IIS were designed to amplify the introns and the results indicated that introns in the same IIS varied in lengths, while terminal sequences were conserved. Our study showed that the process of intron loss happens via a series of successive steps, and each step could derive corresponding introns under intermediate states. Moreover, these results indicate that the mechanism of genomic deletion that occurs at DNA level can also lead to exact intron loss.  相似文献   

5.
Positions of multiple insertions in SSU rDNA of lichen-forming fungi   总被引:11,自引:3,他引:8  
Lichen-forming fungi, in symbiotic associations with algae, frequently have nuclear small subunit ribosomal DNA (SSU rDNA) longer than the 1,800 nucleotides typical for eukaryotes. The lichen-forming ascomycetous fungus Lecanora dispersa contains insertions at eight distinct positions of its SSU rDNA; the lichen-forming fungi Calicium tricolor and Porpidia crustulata each contain one insertion. Insertions are not limited to fungi that form lichens; the lichen ally Mycocalicium albonigrum also contains two insertions. Of the 11 insertion positions now reported for lichen-forming fungi and this ally, 6 positions are known only from lichen-forming fungi. Including the 4 newly reported in this study, insertions are now known from at least 17 positions among all reported SSU rDNA sequences. Insertions, most of which are Group I introns, are reported in fungal and protistan lineages and occur at corresponding positions in genomes as phylogenetically distant as the nuclei of fungi, green algae, and red algae. Many of these positions are exposed in the mature rRNA tertiary structure and may be subject to independent insertion of introns. Insertion of introns, accompanied by their sporadic loss, accounts for the scattered distribution of insertions observed within the SSU rDNA of these diverse organisms.   相似文献   

6.
7.
Nomura N  Morinaga Y  Kogishi T  Kim EJ  Sako Y  Uchida A 《Gene》2002,295(1):43-50
Some archaeal ribosomal DNA (rDNA) introns carry homing endonuclease-like genes and are therefore assumed to propagate by "intron homing". A previous study demonstrated that three introns are located within the rRNA operon (arnSL) of Aeropyrum pernix strain K1, two of which, Ialpha and Igamma, harbor open reading frames (ORFs) encoding putative LAGLIDADG-type endonucleases. In an effort to understand further the rDNA intron distribution in natural A. pernix populations, 11 A. pernix strains were isolated from marine hydrothermal biotopes, and comparative nucleotide sequence analysis of the arnSL alleles was performed. Of the 11 isolates, eight contained multiple introns, and three patterns of intron insertion were found. Three novel introns, Idelta (62 bp in length), Ivarepsilon (122 bp) and Izeta (57 bp) were identified. They were all ORF-less, but their predicted RNA secondary structure at the exon-intron junctions was consistent with the bulge-helix-bulge motif. The insertion positions and the terminal inverted repeat sequences of Idelta and Izeta were in agreement with those of Ialpha and Igamma, respectively. This suggests that these intron variants were generated by large indels (insertions/deletions) during their evolution.  相似文献   

8.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

9.
The ascomycetous fungus Cryptendoxyla hypophloia contains an insertion of 433 base pairs in the genes encoding nuclear small subunit ribosomal RNA. Secondary structure analyses of the insert reveal characteristics indicative of a Group I intron, including elements P, Q, R, and S; however, the sequences of these conserved regions deviate significantly from recognized consensus sequences for Group I introns. Principal-components analysis, based on 79 nucleotide positions from the conserved core sequences of 93 Group I introns, identified 17 introns similar to that of C. hypophloia. This grouping, which includes inserts from phylogenetically diverse organisms, cannot readily be classified in any previously recognized major group of Group I introns. We propose the creation of a new group, IE, to accommodate these sequences, and discuss the evolutionary relationships between group IE and other major groups of Group I introns. Received: 11 January 1998 / Accepted: 12 October 1998  相似文献   

10.
Expression of ribosomal DNA insertions in Drosophila melanogaster.   总被引:35,自引:0,他引:35  
E O Long  I B Dawid 《Cell》1979,18(4):1185-1196
  相似文献   

11.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

12.

Background  

We have studied spliceosomal introns in the ribosomal (r)RNA of fungi to discover the forces that guide their insertion and fixation.  相似文献   

13.
The length of the small subunit ribosomal DNA (SSU rDNA) differs significantly among individuals from natural populations of the ascomycetous lichen complex Cladonia chlorophaea. The sequence of the 3' region of the SSU rDNA from two individuals, chosen to represent the shortest and longest sequences, revealed multiple insertions within a region that otherwise aligned with a 520-nucleotide sequence of the SSU rDNA in Saccharomyces cerevisiae. The high degree of variability in SSU rDNA size can be accounted for by different numbers of insertions; one individual had two group I introns and the second had five introns, two of which were clearly related to introns at identical positions in the other individual. Yet, introns in different positions, whether within an individual or between individuals, were not similar in sequence. The distribution of introns at three of the positions is consistent with either intron loss or acquisition, and clearly indicates the dynamic variability in this region of the nuclear genome. All seven insertions, which ranged in size from 210 to 228 nucleotides, had the conserved sequence and secondary structural elements of group I introns. The variation in distribution and sequence of group I introns within a short highly conserved region of rDNA presents a unique opportunity for examining the molecular evolution and mobility of group I introns within a systematics framework.  相似文献   

14.
15.
C P Tu  S N Cohen 《Cell》1980,19(1):151-160
247 independent events involving insertion of the TN3 transposable element into a 4 kb constructed plasmid (pTU4) of partially known DNA sequence were studied by restriction endonuclease mapping, and 65 of these insertion sites were examined further by DNA sequence analysis. Our results show that the previously proposed regional specificity for Tn3 insertion is associated with a strong preference for AT-rich segments as insertion sites. Moreover, multiple insertions of the Tn3 occurred at certain AT-rich nucleotide positions, and 23 of 26 independent insertion events at a single nucleotide position were found to be in the same orientation. A region of the recipient plasmid showing major homology with the terminal 18 bp of Tn3 was identified in the vicinity of an 11 nucleotide segment that included three insertional hot spots and 36 independent insertions. Our results indicate that the site and orientation of insertion of Tn3 are at least partly determined by the primary nucleotide sequence of the recipient genome, and suggest that insertional hot spots may result from the combined effects of AT richness plus homology of the recipient genome with the terminal sequences of Tn3.  相似文献   

16.
17.
We have isolated cloned segments of ribosomal DNA that have EcoRI restrictable (type II) insertions in their 28 S genes. The type II insertions in these plasmids are homologous sequences and have three characteristic cleavage sites for EcoRI. One of these clones is unusual in that it has undergone a deletion of part of the 28 S gene at or near the site of the type II insertion. A second is unusual in that, in addition to the type II insertion in the rDNA, the transcribed spacer sequences are interrupted by an unidentified sequence. This sequence differs in its arrangement of restriction sites from the sequence that interrupts the transcribed spacer of cDm207 (Glover, 1977). The type II sequences in all these clones share homology with the unusually long ‘insertion’ that interrupts the 28 S gene of cDm207. We have re-examined the nature of the additional sequences linked to the type II sequences of cDm207 and find them to be related to type I rDNA insertion sequences.  相似文献   

18.
19.
The intron positions of ten different protein families were examined to determine (the statistical likelihood of) whether spliceosomal introns are the result of random insertion events into previously intronless genes, on the one hand, or the result of random loss from common ancestral introns, on the other. The number of expected matches for the alternative scenarios was calculated for a binomial distribution by considering currently observed introns relative to all possible locations for insertion or loss. Introns occurring at approximately the same location (hereafter called a ``match') were tallied for each of the paired proteins. Matches were identified by their positions in the multiple alignment and were defined as any two introns occurring within a window of 11 possible nucleotide positions, thereby allowing for possible alignment errors and ``intron sliding.' Matches were tallied from the raw data and compared with the expected number of matches for the two different scenarios. The results suggest that the distribution of introns in genes encoding proteins is due to random insertion and not random loss. Received: 8 September 1996 / Accepted: 24 January 1997  相似文献   

20.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号