首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomes which have entrapped the metallochromic dye, arsenazo III, constitute a sensitive assay system for ionophoresis of divalent cations. By this means we have compared known calcium ionophores (A23187, ionomycin) with membrane phospholipids, fatty acids, prostanoids, and retinoids. Added at micromolar concentrations to preformed multilamellar liposomes (phosphatidylcholine 7:dicetyl phosphate 2: cholesterol 1) both A23187 and ionomycin, as well as phosphatidic acid and products derived from linoleic acid, linolenic acid, and two eicosatrienoic acids provoked Ca influx (e.g. phosphatidic acid: 0.13 mol of Ca2+/mol of membrane lipid/5 min). A variety of other phospholipids (e.g. phosphatidylinositol), fatty acids (e.g. arachidonic acid), prostanoids (e.g. PGE1) retinoids (e.g. retinoic acid), and glyceryl ether phosphorylcholines ("platelet-activating factors") were without effect. Phosphatidic acid and oxidized fatty acids translocated divalent cations selectively, demonstrating the same rank order as A23187 or ionomycin: Mn greater than Ca greater than Sr much greater than Mg. Membrane lysis did not contribute to the perceived translocation; the liposomes remained impermeable to EDTA, EGTA, arsenazo III, or Mg. Liposomes with phosphatidic acid or oxidized trienoic acids preincorporated at 1-5 mole % of total lipids also permitted translocation of Ca but not Mg. Reduction of ionophoretic fatty acids or ionomycin with stannous chloride abolished their ionophoretic activity. Release of Ca from liposomes which had entrapped arsenazo III-Ca complexes into a medium rich in EGTA permitted calculation of efflux induced by ionophores, whether these were added to the outside of liposomes or preincorporated. Data suggest that phosphatidic acid and oxidized di- and trienoic fatty acids, which act as calcium ionophores in model bilayers, could serve as "endogenous ionophores" in cells.  相似文献   

2.
1. The interactions between cytochrome c (native and [(14)C]carboxymethylated) and monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin at the air/water interface was investigated by measurements of surface radioactivity, pressure and potential. 2. On a subphase of 10mm-or m-sodium chloride, penetration of cytochrome c into egg phosphatidylcholine monolayers, as measured by an increase of surface pressure, and the number of molecules penetrating, as judged by surface radioactivity, were inversely proportional to the initial pressure of the monolayer and became zero at 20dynes/cm. The constant of proportionality was increased when the cytochrome c was carboxymethylated or decreased when the phospholipid was hydrogenated, but the cut-off point remained at 20dynes/cm. 3. Penetrated cytochrome c could be removed almost entirely by compression of the phosphatidylcholine monolayer above 20dynes/cm. 4. With phosphatidic acid and cardiolipin monolayers on 10mm-sodium chloride the binding of cytochrome c was much stronger and cytochrome c penetrated into films nearing the collapse pressure (>40dynes/cm.). The penetration was partly electrostatically facilitated, since it was decreased by carrying out the reaction on a subphase of m-sodium chloride, and the relationship between the surface pressure increment and the initial film pressure moved nearer to that observed with phosphatidylcholine. 5. Surface radioactivity determinations showed that [(14)C]carboxymethylated cytochrome c was still adsorbed on phosphatidic acid and cardiolipin monolayers after the cessation of penetration. This adsorption was primarily electrostatic in nature because it could be prevented and substantially reversed by adding m-sodium chloride to the subphase and there was no similar adsorption on phosphatidylcholine films. 6. The penetration into and adsorption on the three phospholipid monolayers was examined as a function of the pH of the subphase and compared with the state of ionization of both the phospholipid and the protein, and the area occupied by the latter at an air/water interface. 7. It is concluded that the binding of cytochrome c to phospholipids can only be partially understood by a consideration of the ionic interaction between the components and that subtle conformational changes in the protein must affect the magnitude and stability of the complex. 8. If cytochrome c is associated with a phospholipid in mitochondria then cardiolipin would fulfil the characteristics of the binding most adequately.  相似文献   

3.
The ionophoretic capabilities of phosphoglycerides (PL) have been examined by measuring their translocation via cations from aqueous dispersions into linear and cyclic hydrocarbons. The PL surveyed were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI). Only PA displayed ionophoretic activity in single lipid dispersions with a cation selectivity order of Mn greater than Ca. PG, PE and PC, but not PI, had a synergistic affect of PA induced translocation. These PL, inactive individually or in any combination, became strong Ca2+ ionophores of variable activity in association with PA. A dimeric structure proposed for the ionophoretic species forms the basis of a mechanism for transbilayer movement of PA, PG, PE and PC which would establish an asymmetric distribution of these lipids in the two faces of the bilayer by equilibrium processes.  相似文献   

4.
The activity vs. pH profile for the oxidation of ferrocytochrome c by purified cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was investigated as a function of ionic strength (from 10 to 200 mM) in the absence and in the presence of various perturbants: Tween 20, linear polyanions (RNA, heparin, polyglutamic acid) and phospholipids (asolectin, phosphatidylcholine, phosphatidic acid and cardiolipin). The activation induced by Tween 20 and "zero net charge" phospholipid liposomes was not pH dependent. On the other hand, linear polyanions and polyanionic liposomes strongly perturbed the pH profile, mostly at low ionic strength, by shifting the pH optimum about 1.7 pH units towards alkaline pH values. This effect was reversed by increasing ionic strength. These observations are interpreted in the light of polyelectrolyte theory. Since these results show striking with membrane-bound enzyme, it is concluded that in vivo cytochrome oxidase is located within polyanionic sites of the micochondrial membrane. The activation broght about by phospholipids may result from two posible processes: creation of a hydrophobic environment by the non-polar tails, preventing autoaggregation; and creation of a suitable polyelectrolytic environment by the polar heads (of non zero net charge), increasing the intrinsic reaction rate.  相似文献   

5.
The endogenous lipophilic and cationic compound N-retinyl-N-retinylidene ethanolamine (A2E) is suspected to cause age-related macula degeneration. It inhibits cytochrome c oxidase, detaches proapoptotic proteins from mitochondria, and induces apoptosis in mammalian retinal pigment epithelial cells (M. Suter, C. E. Remé, C. Grimm, A. Wenzel, M. J??ttela, P. Esser, N. Kociok, M. Leist, and C. Richter, 2000, J. Biol. Chem. 275, 39625-39630). The inhibition of cytochrome c oxidase is highly specific for A2E and is observed with the solubilized and reconstituted enzyme. In the dark, inhibition is overcome by cardiolipin or other acidic phospholipids. With illumination, inhibition is stronger, becomes complete with prolonged exposure, and is then no longer abrogated by cardiolipin. Cardiolipin effectively displaces A2E from cytochrome c oxidase, suggesting noncovalent binding of A2E to the enzyme. We conclude that A2E is a potent cytochrome c oxidase-specific inhibitor which interferes with the binding of cytochrome c to cytochrome c oxidase and, in the light, causes persistent modifications of the enzyme.  相似文献   

6.
Apoptosis has been identified recently as a component of many cardiac pathologies. However, the potential triggers of programmed cell death in the heart and the involvement of specific metabolic pathway(s) are less well characterized. Detachment of cytochrome c from the mitochondrial inner membrane is a necessary first step for cytochrome c release into the cytosol and initiation of apoptosis. The saturated long chain fatty acid, palmitate, induces apoptosis in rat neonatal cardiomyocytes and diminishes content of the mitochondrial anionic phospholipid, cardiolipin. These changes are accompanied by 1) acyl chain saturation of phosphatidic acid and phosphatidylglycerol, 2) large increases in the levels of these two phospholipids, and 3) a decline in cardiolipin synthesis. Although cardiolipin synthase activity is unchanged, saturated phosphatidylglycerol is a poor substrate for this enzyme. Under these conditions, decreased cardiolipin synthesis and release of cytochrome c are directly and significantly correlated. The results suggest that phosphatidylglycerol saturation and subsequent decreases in cardiolipin affect the association of cytochrome c with the inner mitochondrial membrane, directly influencing the pathway to cytochrome c release and subsequent apoptosis.  相似文献   

7.
Biosynthesis of Cardiolipin in Plant Mitochondria   总被引:2,自引:1,他引:1       下载免费PDF全文
Frentzen M  Griebau R 《Plant physiology》1994,106(4):1527-1532
The properties of cardiolipin synthase were investigated in mitochondria and submitochondrial fractions from etiolated mung bean (Vigna radiata L.) seedlings. Direct evidence is presented that the enzyme utilizes CDP-diacylglycerol in addition to phosphatidylglycerol for the synthesis of cardiolipin. Cardiolipin synthase had an alkaline pH optimum of about 9 and required divalent cations for activity. Maximal activity was obtained in the presence of 16 mM MnCl2. The apparent Km values for CDP-diacylglycerol and phosphatidylglycerol were 0.8 and 50 [mu]M, respectively. Cardiolipin synthase was localized predominantly in the inner membrane of mung bean mitochondria and displayed a substrate species specificity. Highest activities were measured with the dioleoyl species of both CDP-diacylglycerol and phosphatidylglycerol, and somewhat lower activities were measured with mixed species of the two substrates containing a palmitoyl and an oleoyl group. On the other hand, the cardiolipin synthase hardly used the dipalmitoyl species and strongly discriminated against CDP-dipalmitoylglycerol from a mixture with CDP-dioleoylglycerol.  相似文献   

8.
We have used two-dimensional infrared correlation spectroscopy (2D-IR) to study the interaction and conformation of cytochrome c in the presence of a binary phospholipid mixture composed of a zwitterionic perdeuterated phospholipid and a negatively-charged one. The influence of the main temperature phase transition of the phospholipid model membranes on the conformation of cytochrome c has been evaluated by monitoring both the Amide I' band of the protein and the CH(2) and CD(2) stretching bands of the phospholipids. Synchronous 2D-IR analysis has been used to determine the different secondary structure components of cytochrome c which are involved in the specific interaction with the phospholipids, revealing the existence of a specific interaction between the protein with cardiolipin-containing vesicles but not with phosphatidic acid-containing ones. Interestingly, 2D-IR is capable of showing the existence of significant changes in the protein conformation at the same time that the phospholipid transition occurs. In summary, 2D-IR revealed an important effect of the phospholipid phase transition of cardiolipin on the secondary structure of oxidized cytochrome c but not to either reduced cytochrome c or in the presence of phosphatidic acid, demonstrating the existence of specific intermolecular interactions between cardiolipin and cytochrome c.  相似文献   

9.
Ca2+-translocating activities of phosphatidylinositol, diacylglycerol and phosphatidic acid were investigated in phosphatidylcholine liposomes. Using a fluorescent indicator of Ca2+ concentration, quin-2, release of encapsulated Ca2+ from egg yolk phosphatidylcholine liposomes containing 2 mol% of one of these lipids was measured at 37 degrees C. The rate of Ca2+ translocation across the liposomal membrane mediated by phosphatidic acid was about 3-fold larger than those mediated by phosphatidylinositol and diacylglycerol. The result implies that phosphatidic acid has Ca2+-ionophore activity in the agonist dependent metabolism of inositol phospholipids. The ionophoretic activity depended on the degree of unsaturation of the fatty acyl chains. The Ca2+ translocation rate was smallest in dipalmitoylphosphatidic acid, and it increased in the order of dioleoyl-, dilinoleoyl- and dilinolenoyl-phosphatidic acid. Ca2+ mobilization of a stimulated cell is discussed in the light of Ca2+-ionophore activity of phosphatidic acid converted from inositol phospholipids.  相似文献   

10.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

11.
The fatty acid composition and content of phosphatidylinositol, phosphatidylserine and phosphatidic acid have been studied during the early development of toad embryos. Acidic phospholipids have been analyzed in whole oocytes and embryos and in the following subcellular fractions: yolk platelets, mitochondria and microsomes. Also cardiolipin, a mitochondrial phospholipid, has been analyzed. Gastrula stage embryos have shown, mainly in the mitochondrial fraction, an increase in the content of phosphatidic acid, phosphatidylserine and phosphatidylinositol with respect to unfertilized oocytes. Changes in the distribution of acyl groups of phosphatidic acid have been detected when different subcellular fractions are compared. On the other hand, the phosphatidylserine composition remains unmodified. Arachidonate and stearate are the principal components of phosphatidylinositol. Cardiolipin shows the same composition up to gastrulation and linoleate comprises about 50% of the total acyl groups.  相似文献   

12.
The interactions of PE and its N-methylated derivatives (PME, PDE AND PC) WITH Ca2+ were examined. PE and the intermediate phospholipids of PE N-methylation (PME and PDE) interacted with Ca2+ in a pH-dependent and reversible manner. When these phospholipids were present in the heptane phase, Ca2+ in the aqueous phase was translocated into the heptane phase at alkaline pH but not at acidic pH. PDE was also effective for the translocation even at around neutral pH, while PC hardly translocated Ca2+ at pH 6.0-9.2. The amounts of Ca2+ interacting with these phospholipids were in the following order: PDE is greater than PME is greater than PE is much greater than PC. P1, phosphatidic acid and PS interacted with Ca2+ in the whole pH range examined. The Ca2+ interactions with P1 and phosphatidic acid were independent of pH, while PS interacted with more Ca2+ at alkaline pH. These phospholipids interacted with Ca2+ most strongly among the cations studied. Liposomes containing PDE also bound the highest amounts Ca2+ among PE and its N-methylated derivatives. Furthermore, mammalian cultured cell membranes, which contain increased amounts of PDE by in vivo modification with N,N'-dimethylethanolamine, bound more Ca2+ than those prepared from choline-treated control cells.  相似文献   

13.
The optimum conditions for autolysis of Clostridium acetobutylicum ATCC 824 were determined. Autolysis was optimal at pH 6.3 and 55 degrees C in 0.1 M-sodium acetate/phosphate buffer. The ability of cells to autolyse decreased sharply at the end of the exponential phase of growth. Lysis was stimulated by monovalent cations and compounds that complex divalent cations, and inhibited by divalent cations. The autolysin of C. acetobutylicum, which was mainly cytoplasmic, was purified to homogeneity and characterized as a muramidase. The enzyme was identical to the extracellular muramidase in terms of M(r), isoelectric point and NH2-terminal amino acid sequence. The autolysin was inhibited by lipoteichoic acids and cardiolipin but not by phosphatidylethanolamine and phosphatidylglycerol. A mechanism of regulation and fixation involving lipoteichoic acid, cardiolipin and divalent cations is proposed.  相似文献   

14.
Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.  相似文献   

15.
The local generation of phosphatidic acid plays a key role in the regulation of intracellular membrane transport through mechanisms which are largely unknown. Phosphatidic acid may recruit and activate downstream effectors, or change the biophysical properties of the membrane and directly induce membrane bending and/or destabilization. To evaluate these possibilities, we determined the phase properties of phosphatidic acid and lysophosphatidic acid at physiological conditions of pH and ion concentrations. In single-lipid systems, unsaturated phosphatidic acid behaved as a cylindrical, bilayer-preferring lipid at cytosolic conditions (37 °C, pH 7.2, 0.5 m m free Mg2+), but acquired a type-II shape at typical intra-Golgi conditions, a mildly acidic pH and submillimolar free Ca2+ (pH 6.6–5.9, 0.3 m m Ca2+). Lysophosphatidic acid formed type-I lipid micelles in the absence of divalent cations, but anhydrous cation-lysophosphatidic acid bilayer complexes in their presence. These data suggest a similar molecular shape for phosphatidic acid and lysophosphatidic acid at cytosolic conditions; however, experiments in mixed-lipid systems indicate that their shape is not identical. Lysophosphatidic acid stabilized the bilayer phase of unsaturated phosphatidylethanolamine, while the opposite effect was observed in the presence of phosphatidic acid. These results support the hypothesis that a conversion of lysophosphatidic acid into phosphatidic acid by endophilin or BARS (50 kDa brefeldin A ribosylated substrate) may induce negative spontaneous monolayer curvature and regulate endocytic and Golgi membrane fission. Alternative models for the regulation of membrane fission based on the strong dependence of the molecular shape of (lyso)phosphatidic acid on pH and divalent cations are also discussed.  相似文献   

16.
17.
Summary Divalent cation association to sonicated phospholipid liposomes has been examined with electron paramagnetic spectroscopy. Spectra were obtained suggesting that, in some cases, divalent cations associated with acidic phospholipid head groups are highly mobile.Using the amplitude of its characteristic sextet signal as a measure of free Mn(H2O) 6 ++ , the apparent affinities of cardiolipin and phosphatidylserine for Mn2+ were measured as a function of monovalent electrolyte. Monovalent cations having smaller nonhydrated radii were more effective in displacing Mn from the phospholipids. Under conditions of low divalent cation concentrations, it is shown that the Gouy-Chapman diffuse double layer theory predicts a Mn-affinity (K A ) inversely proportional to the square of monovalent salt concentration. Although this relationship was closely obeyed for Mn binding to cardiolipin, the fall-off inK A with added sodium chloride was slower in the cases of Mn binding to phosphatidylserine or phosphatidic acid.When phosphatidylcholine or cholesterol was incorporated into mixed vesicles along with a fixed amount of charged phospholipid, the Mn-binding strength was roughly proportional to the weight fraction of the latter. This result is consistent with: (1) a random dispersal of lipids in the bilayer, and (2) a 1:2 divalent cation-phospholipid interaction.  相似文献   

18.
Purification and characterization of endogenous lipid factors that stimulate rat liver lysosomal lipase has led to the identification of cardiolipin, phosphatidylserine, and phosphatidic acid as stimulators of this activity. Bovine heart cardiolipin (half-maximal stimulation at 1.5 x 10(-4) m) and bovine brain phosphatidylserine (half-maximal stimulation at 9.5 x 10(-4) m) were the most potent of the phospholipids from other sources tested. The major rate-enhancing effect of phosphatidylserine is expressed as a 35-fold increase in the apparent V(max) of the enzyme. The effect is produced by acid phospholipids specifically, since in no case was there greater than a twofold stimulation by synthetic detergents, zwitterionic phospholipids, taurocholic acid, or gum acacia. The observed degree of stimulation depends upon the detergent used to disperse tripalmitin substrate and the relative concentrations of factor and detergent in reaction mixtures. The concentration of phosphatidylserine to produce half-maximal stimulation is directly dependent upon the Triton X-100 concentration, but the effects of this detergent on cardiolipin stimulation are more complex. Enzyme activity is inhibited 50% by 1 mm nucleoside triphosphate and 2.5 mm ADP, 80% by 1 mm PP(i), 100% by 20 U/ml heparin and 0.25 mg/ml chondroitin sulfate, and 80% by 10 mm sulfate ion. Inhibition is partially prevented by phosphatidylserine.  相似文献   

19.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

20.
The divalent cation requirement for mitochondrial cardiolipin biosynthesis has been further investigated. The relative order of divalent cation activity was Co-2+ greater than Mn-2+ greater than Mg-2+. Cardiolipin was not formed in the incubations with Zn-2+, Fe-2+, Cu-2+, Hg-2+, and Ca-2+. Cardiolipin synthesis in the presence of optimal cincentration of Co-2+ was inhibited by Ca-2+. A series of CDP-diglycerides was synthesized having differences in fatty acid chain lenth and degree of unsaturation. These compounds were tested in mitochondrial cardiolipin and phosphatidylglycerol synthesis. Although there were some minor differences between phosphatidylglycerol and cardiolipin synthesis, in general, saturated shorter chain CDP-diglycerides (dilauroyl and dimyristoyl) were better substrates than the longer chain dipalmitoyl and distearoyl homologues. Introduction of double bonds into distearoyl CDP-diglyceride resulted in more rapid rates of synthesis (e.g. dioleoyl and dilinoleoyl CDP-diglyceride). Significance of the results is dicussed with regard to possible mechanisms of linoleic acid incorporation into rat liver cardiolipin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号