首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的] 明确六斑月瓢虫雌雄成虫触角感觉器种类、分布及形态特征。[方法] 利用扫描电子显微镜对六斑月瓢虫雌、雄成虫触角形态及触角感受器超微结构进行观察。[结果] 六斑月瓢虫成虫触角由柄节、梗节和鞭节组成,柄节长度与宽度显著大于梗节长度与宽度;鞭节分为9个亚节,末端3节横向膨大呈锤状。雌雄成虫触角上共有8种感觉器:刺形感觉器(SC)、毛形感觉器(ST)、锥形感觉器(SB)、腔形感觉器(CaS)、钟形感觉器(CS)、哑铃形感觉器(DS)、香肠形感觉器(SS)及B?hm氏鬃毛感觉器(BB)。以毛形感觉器和刺形感觉器分布最广,遍布触角;B?hm氏鬃毛仅存在于触角柄节与梗节;触角鞭节第9亚节顶端密布7种触角感觉器。六斑月瓢虫雌雄成虫触角长度、触角感觉器类型及分布无显著差异。[结论] 六斑月瓢虫成虫触角上共有8种感觉器,其触角可能具有感知机械刺激、识别化学信息素及感受温湿度变化的作用。本研究为进一步了解六斑月瓢虫触角与其行为间的关系提供基础资料。  相似文献   

2.
Summary An electron microscopical study of aphid antennal sensilla has revealed two types of trichoid sensilla. Type I, innervated by a single neuron is mechanoreceptive; type II, innervated by three to five neurons is both mechanoreceptive and chemoreceptive with possibly a third function. Johnston's organ in the pedicel comprises a peripheral ring of scolopidia inserted into the joint with the flagellum; two non-peripheral groups of scolopidia lie in the lumen with attachment points in the wall of the third segment. The fine structure of a campaniform sensillum on the pedicel is described together with two homologous and previously unknown sense organs at the joint between the fifth and sixth antennal segments. An unusually placed scolopidium in the lumen of the sixth segment has also been found. The function of this scolopidium is unknown but Johnston's organ, the campaniform sensillum and joint receptors are suggested to act as antennal proprioceptors.The authors thank the Long Ashton Research Station, Bristol for use of the SEM facilities. A.K. Bromley gratefully acknowledges the tenure of a S.R.C. CASE Studentship and thanks Professor L.H. Finlayson for research facilities  相似文献   

3.
红火蚁触角及其上感受器的扫描电镜观察   总被引:9,自引:0,他引:9  
高艳  罗礼智 《昆虫学报》2005,48(6):986-992
应用扫描电镜对采自我国广东吴川和广西南宁的红火蚁Solenopsis invicta Buren工蚁、有翅雌蚁和雄蚁触角的形态和感受器类型进行了研究。结果表明,工蚁、雌蚁和雄蚁的触角存在着较大的差异。工蚁和雌蚁的触角为膝状,末端2或3节膨大为棒状,雌蚁的触角11节,比工蚁(10节)的多1节。雄蚁的触角为线状,12节,末端没有棒状结构。工蚁和雌蚁的触角上共有7种感受器,分别为毛形、曲毛形、锥形、腔锥形、坛形、刺形感受器和Böhm氏鬃毛,前6种感受器大多集中在触角末端的棒节,棒节以外的各鞭节上主要是毛形感受器,Böhm氏鬃毛则分布于柄节和梗节的基部,鞭节上无此感受器。雄蚁触角上也有7种感受器,但其分布与工蚁的有较大差异,Böhm氏鬃毛的分布与工蚁和雌蚁的相同,锥形感受器分布在末端2节,坛形感受器分布在末端3节,其余的4种感受器较为均匀地分布在各鞭节,而不是聚集在端节。另外,新发现雄蚁中存在一种与已知的毛型感受器不同的超短毛状感受器,定名为超短毛感受器。最后,对红火蚁的触角及感受器在蚁群社会性行为中的作用进行了讨论。  相似文献   

4.
烟草甲触角感器的扫描电镜观察   总被引:1,自引:0,他引:1  
利用扫描电镜观察烟草甲Lasioderma serricorne(Fabricius)成虫触角感器的形态和分布。结果表明,烟草甲成虫触角由柄节、梗节和鞭节组成,其中鞭节由9个亚节组成;在触角上共观察到毛形感器、刺形感器、锥形感器Ⅰ、锥形感器Ⅱ、锥形感器Ⅲ、锥形感器Ⅳ、钟形感器、B hm氏鬃毛和球状感器9种感器类型,其中锥形感器Ⅳ、钟形感器、B hm氏鬃毛和球状感器为新发现的烟草甲触角感器。此外,还讨论感器结构与功能的关系。  相似文献   

5.
松突圆蚧(Hemiberlesia pitysophila Takagi)是我国南方重要的外来林业害虫。本研究利用扫描电镜对该蚧雄成虫的触角形态和感器进行了观察。结果表明:松突圆蚧雄成虫触角呈线状,由柄节、梗节和鞭节组成,共10节。触角感器共有5种,分别为Bhm氏鬃毛、毛形感器、乳头形感器、锥形感器、火柴形感器,其中,火柴形感器为首次在松突圆蚧雄成虫触角上发现并描述。不同感器在触角各节的数量和分布各不相同,其中,毛形感器数量最多,分布最广,乳头形感器次之,火柴形感器最少。此外,根据感器的分布、形态特征,结合已有的文献描述,推测了感器可能的功能。  相似文献   

6.
悬铃木方翅网蝽触角感器扫描电镜观察   总被引:1,自引:0,他引:1  
陆佳伟  苏鹏  常虹  郝德君 《昆虫知识》2012,49(6):1643-1647
利用扫描电镜对悬铃木方翅网蝽Corythucha ciliata(Say)雌、雄成虫触角背面和腹面进行观察。结果表明:悬铃木方翅网蝽触角为棒状,共4节,分为柄节、梗节和鞭节。触角上共有4种感器,分别为刺型感器、锥形感器、毛型感器和芽型感器;这些感器不存在性二型现象。其中,刺型感器分为大刺型感器和小刺型感器2种类型;芽型感器首次在异翅亚目昆虫触角上发现。雄成虫触角感器数量明显多于雌成虫,不同类型的感器在触角各节上的数量与分布各不相同。  相似文献   

7.
Morphological structures of the head of 1st and 5th instar nymphs of Triatoma circummaculata and Triatoma rubrovaria were revealed by analysis using scanning electron microscopy (SEM). Differences between 1st and 5th instar nymphs of these two species were observed in the postocular callosity, the number of ommatidia and tapered hair, the small segment between antennal segments, the rostrum third segment and slit lines. These slit lines were different only in the 5th instar. Similarities observed were the presence of tapered hairs in the joints, and the type of sensilla in the antennal segments. Only the 1st instar shows anteclypeus and gena sensilla. The antennal segments comprise the following types of sensilla: basiconica, bristles type I, bristles type II, bristles type III, campaniformia, coeloconica, chemosensilla, placodea, trichobothria and trichoidea. We describe here for the first time six (3+3) sensilla basiconica on the dorsal portion of the first segment of the rostrum.  相似文献   

8.
Summary The structure of the campaniform sensilla of the cricket eye was investigated by light and electron microscopy. Each sensillum is innervated by a single bipolar neuron. Its axon extends through the retina into a side-branch of the nervus tegumentarius. The dendrite extends through a cuticular channel to the surface of the cornea. The distal part of the dendrite, the sensory process, contains a tubular body and is attached to a cuticular cap which is obliquely inserted into the exocuticle between the corneal lenslets. Some particular structural features as well as the function of the campaniform sensillum of the cricket eye are discussed.Supported by the Deutsche Forschungsgemeinschaft, grant Ho 463/10The authors are indebted to Prof. H. Altner, University of Regensburg, and Mrs. Evelyn Thury, Contron GmbH, München for use of the scanning electron microscope facilities  相似文献   

9.
The distribution and fine morphology of antennal sensilla of nymphal and adult mayfly, Baetis rhodani (Ephemeroptera : Baetidae), were examined. In the nymph, various kinds of sensilla (chaetica, basiconica, coeloconica and cuticular pits) are differently arranged on the antennal segments, whereas sensilla campaniformia delimit the distal border of the pedicel. A peculiar kind of sensillum basiconicum, named flat-tipped sensillum, is present along the entire antenna, even though in the flagellum it has a regular arrangement between the cuticular lobes that delimit the distal border of each article. In the subimago the scape and pedicel are profusely covered with microtrichia and scattered sensilla trichodea, whereas the flagellum shows cuticular ribs. Sensilla coeloconica are present along the ventral side of the flagellum. In the imago, the antenna is completely decorated with scales among which sensilla trichodea and sensilla coeloconica occasionally occur. As in the nymph, adult mayflies have a ring of sensilla campaniformia along the distal border of the pedicel. When compared with nymphal antennae, those of adults have fewer types of sensilla, presumably in relation to the short, non-feeding terrestrial life.  相似文献   

10.
辛星  马子龙  覃伟权 《昆虫学报》2010,53(6):626-633
对寄生蜂交配行为的了解将有助于发展对其行为调控的技术,提高寄生蜂对害虫控制的效能。为探讨椰心叶甲啮小蜂Tetrastichus brontispae Ferrière的复眼和触角在交配中的作用,用水溶性黑色素和液体石蜡分别涂抹该蜂复眼和触角后观察其交配行为,并利用扫描电镜(SEM)观察其复眼和触角的超微结构,分析雌、雄蜂触角感器的分布与数量差异。结果表明:椰心叶甲啮小蜂雄蜂的复眼在交配过程中起重要作用,雌蜂复眼作用不显著。在椰心叶甲啮小蜂求偶识别和接受过程中,雄蜂触角柄节部位起主要作用,其次是棒节部位,再次是鞭节的索亚节部位,而雌蜂触角鞭节索亚节部位起主要作用,然后是棒节部位,最后是柄节部位。扫描电镜观察表明椰心叶甲啮小蜂触角上共有8种感器,其中毛形感器和板形感器是主要感器,雌、雄蜂触角有明显的性二型现象,表现为触角大小不同及触角感器类型、大小、数量、分布不同。  相似文献   

11.
The terminalia of male and female Aedes aegypti (L.) bear numerous hairs of various shapes and lengths, all of which are mechanoreceptors. Each hair is innervated by one bipolar neuron which contains ciliary rootlets, two basal bodies, and a region assuming the structure of a non-motile cilium. At the distal tip of the dendrite is a tubular body, a characteristic of cuticular mechanoreceptors. Covering the outer dendritic segment is a cuticular sheath which ends proximally in a net-like felt-work and distally attaches to the hair base. Each hair sensillum has two sheath cells. Presumed efferent fibers are associated with the sheath cells. On the insula of the female terminalia are a few campaniform sensilla, the domes of which are raised into small pegs. The sensilla on the terminalia function in copulation and oviposition and probably in warning. A sequence of neurological events is traced for copulation and oviposition. Other cuticular structures, viz., scales, microtrichia, acanthae, and aedeagal spines, which occur on the terminalia are not innervated.  相似文献   

12.
Nine different types of sensilla have been identified on the antenna of the cassava mealybug Phenacoccus manihoti (Homoptera : Pseudococcidae) with scanning and transmission electron microscopes. Trichoid sensilla, distributed on all segments of the antenna and innervated by a single mechanoreceptive dendrite, have the characteristics of exteroceptors. A campaniform sensillum located on the pedicel and one basiconic sensillum on the flagellum have the characteristics of proprioceptors. Coeloconic sensilla, located ventrally on the pedicel and flagellum, related to poreless sensilla with inflexible sockets, have the characteristics of thermo/hygroreceptors. Uniporous sensilla with a mechanoreceptive dendrite (smooth pegs P1 and P2, grooved pegs P3) and multiporous chemosensilla (grooved pegs P4 and P5), present on the tip of the flagellum, have, respectively, the characteristics of gustatory and olfactory receptors. The results of this study seem to suggest that the cassava mealybug has sensory equipment on its antennae that can detect, by olfaction and contact, chemicals released by the plant.  相似文献   

13.
绿盲蝽触角感器的扫描电镜观察   总被引:7,自引:1,他引:6  
利用扫描电镜对绿盲蝽雌雄成虫的触角形态和感器进行了观察。结果表明: 绿盲蝽触角为线形, 共4节, 即柄节、梗节和2个鞭节。触角感器共有4种, 分别为毛形感器、刺形感器、锥形感器、Böhm氏鬃毛。其中, 毛形、刺形、锥形感器各有两种类型。雌雄个体之间触角感器的类型、分布均没有明显差异。不同感器在触角各节上的数量与分布各不同。  相似文献   

14.
ABSTRACT Porphyrophora (Hemiptera: Coccomorpha: Margarodidae) is a genus of soil‐inhabiting scale insects. The antennal sensilla and their innervation in the first‐instar nymphs of Porphyrophora sophorae were studied using light microscopy and scanning and transmission electron microscopy to understand the function of these sensilla and determine the sensillar innervation feature on these small antennae. The results show that the six‐segmented antennae of these nymphs have 20–23 sensilla which can be morphologically classified into seven types, for example, one Böhm's bristle (Bb), one campaniform sensillum (Ca), one Johnston's organ (Jo), 13–16 aporous sensilla trichodea (St), two coeloconic sensilla (Co), one straight multiporous peg (Mp1), and one curvy multiporous peg (Mp2). According to their function, these sensilla can be categorized into three categories: mechanoreceptors, that is, Bb, Ca, Jo, and St; thermo/hygroreceptors, that is, Co only; and chemoreceptors, that is, Mp1 and Mp2. The dendrites that innervate the Mp1, Mp2, and Co sensilla combine to form a large nerve tract (NT1) in the antennal lumen. Because NT1 extends through and out of the antenna, the somata of these neurons are present in the lymph cavity of the insect's head. The dendrites that innervate the mechanoreceptors form another nerve tract (NT2). The somata of these neurons are located inside the scape and pedicel. J. Morphol. 277:1631–1647, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Keil TA 《Tissue & cell》1989,21(1):139-151
The flagellar antenna of the male hawkmoth Manduca sexta carries about 42,000 pheromone-sensitive sensilla trichodea, which are arranged in 'baskets' on the single segments. Each sensillum consists of a cuticular hair up to 500 mum long and is innervated by two bipolar sensory neurons. Each neuron sends an unbranched dendrite into the hair shaft. The dendrite is subdivided by a short ciliary region into an inner and an outer segment. The inner segment is especially rich in smooth vesicles, which accumulate beneath the ciliary region where they seem to fuse with the dendritic membrane. The outer dendritic segment often shows conspicuous 'beads' along its length. Three auxiliary, or enveloping, cells belong to each adult sensillum. These are the thecogen, the trichogen, and the 'outer' cell. Most probably, the latter is not homologous with the 'traditional' tormogen cell from a genealogical point of view.  相似文献   

16.
Sensilla on the antennae of adult and last-instar nymphs of the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), were examined with light, scanning and transmission electron microscopy. Six different types were identified in adult females and males and 5 types in last-instar nymphs: types 1 and 4 are sensilla trichodea, 2 and 3 are sensilla chaetica, and 5 and 6 are sensilla basiconica. Type 1 are located at distal region of terminal segment and type 2 are located at distal regions of proximal 3 segments in both adults and nymphs. Type 3 is present on all segments, more numerous on scape and pedicel and less abundant on distal third and fourth segments in both adult and nymphal stages. Types 4 and 6 are absent on the scape and present on the distal 3 antennal segments in adults, but they are present only on the distal-most antennal segment in nymphs. Type 5 sensilla are present only on second antennal segments in adults and are absent in nymphs. Sexual dimorphism is observed in total numbers: there are significantly more type(s) 3, 4, 5 and 6 sensilla in adult males than adult females. Types 1, 4 and 5 are multiporous with thin cuticle, branched dendrites and pore tubules which suggests an olfactory function. These sensilla have 3, 3 and 2 neurons, respectively. The type 6 sensillum has an apical pore and pores in the cuticular wall, and is innervated by 5 nerve cells with unbranched dendrites. Sensillar types 2 and 3 have thick cuticle, a single apical pore and nerve cells with unbranched dendrites. Type 2 has 1 neuron and type 3 has 2 chambers and 2 nerve cells.  相似文献   

17.
The ultramorphology of the antennae and mouthparts of the adult Loxocephala perpunctata Jacobi was studied through a scanning electron microscope. Seven types of sensilla were found on antennomeres, including a Böhm bristle on the scape, sensillum trichoideum and plaque organ on the pedicel, two subtypes of sensilla chaetica and two subtypes of sensilla campaniformia on these two antennomeres; and Bourgoin's organ with sensory pegs and sensilla basiconicum on the basal bulb of the flagellum. The mouthparts of L. perpunctata are of the typical piercing-sucking type, similar to mouthparts found in other hemipteran insects. In general, six types of sensilla (i.e., four subtypes of sensilla chaetica, sensillum basiconicum, subapical labial sensillum, uniporous peg-like sensillum, multiporous peg-like sensillum and two subtypes of bristle-like sensilla) were detected on different locations of the labium, with the last three, and numerous cuticular processes, present on the labial tip. The potential functions of these sensilla are discussed.  相似文献   

18.
A hitherto unknown sensillum type, the “intracuticular sensillum” was identified on the dactyls of the walking legs of the shore crab, Carcinus maenas. Each sensillum is innervated by two sensory cells with dendrites of “scolopidial” (type I) organization. The ciliary segment of the dendrite is 5–6 μm long and contains A-tubules with an electron-dense core and dynein arm-like protuberances; the terminal segment is characterized by densely packed microtubules. The outer dendritic segments pass through the endo- and exocuticle enclosed in a dendritic sheath and a cuticulax tube (canal), which is suspended inside a slit-shaped cavity by cuticular lamellae. The dendrites and the cavity terminate in a cupola-shaped invagination of the epicuticle. External cuticular structures are lacking. Three inner and four to six outer enveloping cells are associated with each intracuticular sensillum. The innermost enveloping cell contains a large scolopale that is connected to the ciliary rootlets inside the inner dendritic segments by desmosomes. Scolopale rods are present in enveloping cell 2. Since type I dendrites and a scolopale are regarded as modality-specific structures of mechanoreceptors, and since no supracuticular endorgan is present, the intracuticular sensilla likely are sensitive to cuticular strains. The intracuticular sensilla should be regarded as analogous to insect campaniform sensilla and arachnid slit sense organs.  相似文献   

19.
Summary We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the antenna of the sphinx moth Manduca sexta. High levels of echothiophate-insensitive (presumably intracellular) AChE activity were found in six different types of antennal receptors localized in specific regions of the three antennal segments of the adult moth. Mechanosensory organs in the scape and pedicel, the Böhm bristles and Johnston's organ, are innervated by AChE-positive neurons. In each annulus of the antennal flagellum, AChE-positive neurons are associated with six sensilla chaetica and a peg organ, probably a sensillum styloconicum. At least 112 receptor neurons (8–10 per annulus) innervating the intersegmental membranes between the 14 distalmost annuli also exhibit high levels of echothiophate-resistant AChE. In addition, each annulus has more than 30 AChE-positive somata in the epidermis of the scale-covered (back) side of the flagellum, and 4 AChE-positive somata reside within the first annulus of the flagellum. Since none of the olfactory receptor neurons show a high level of echothiophateresistant AChE activity, and all known mechanoreceptors are AChE-positive, apparently intracellular AChE activity in the antenna correlates well with mechanosensory functions and is consistent with the idea that these cells employ acetylcholine as a neurotransmitter.  相似文献   

20.
The antenna of fourth instar larvae of Aedes aegypti has one peg organ of a basiconic type innervated by four neurons. The dendrites are ensheathed to near their terminations at the peg tip by an electron-dense dendritic sheath and by a cuticular sheath. They have easy communication by diffusion with the external environment only at the tip through a peripheral ensheathing membrane and six slit-channels. One of the dendrites resembles a tubular body proximally and may be mechanoreceptive. The peg generally appears to be a contact chemoreceptor. There are three antennal hairs of a typical sensillum trichodeum type innervated at the base by one neuron each. An intricate terminal mechanism at the insertion of the dendrite in the hair is described. These are believed to be tactile hairs. There are also three antennal hairs each innervated by two neurons. The dendrite from one terminates at the base similar to that of a tactile hair, and is believed to function in a similar mechanoreceptive manner. The dendrite from the second neuron extends naked along the length of the hair lumen. It is believed to be primarily chemoreceptive, in a slow-acting general sensory function. In all the sensilla there appear to be secretions produced in the junction body regions of the dendrites, and there is evidence for accumulation of secretory materials in the dendritic tips in some of the sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号