首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent evidence suggests roles for egg derived hydrogen peroxide (H2O2) and ovoperoxidase (secreted by cortical granules) in both fertilization envelope hardening and the block to polyspermy in sea urchins. Strongylocentrotus purpuratus eggs were found to release H2O2 during the cortical reaction at fertilization. Treatment of sperm with equivalent concentrations of H2O2 resulted in a rapid loss of sperm fertilizing ability. Attempts were made to induce polyspermy by utilizing ovoperoxidase inhibitors at concentrations known to inhibit fertilization envelope hardening. Eggs fertilized in phenylhydrazine became polyspermic, while 3-amino-1,2,4-triazole-treated eggs did not. These data suggested that a sperm peroxidase might be involved in preventing polyspermy. This hypothesis was tested by the addition of phenylhydrazine or 3-amino-1,2,4-trizaole to H2O2-treated sperm. Phenylhydrazine acted to protect sperm fertility from H2O2, while 3-amino-1,2,4-triazole increased the adverse effect of H2O2. Simultaneous addition of both inhibitors to sperm incubated in H2O2 gave an intermediate value of sperm fertility. These data indicate that (1) H2O2 generated by sea urchin eggs during the cortical reaction at fertilization is used for two separate processes, fertilization envelope hardening and the prevention of polyspermy; (2) ovoperoxidase is probably not involved in preventing polyspermy; and (3) egg-derived H2O2 reacts directly with sperm enzymes to prevent polyspermy. The phenylhydrazine-sensitive enzyme in the sperm is probably a peroxidase that acts to inactivate sperm, while the 3-amino-1,2,4-triazolesensitive enzyme is probably a catalase which protects sperm from H2O2. This hypothesis is consistent with model experiments on horseradish peroxidase and bovine liver catalase.  相似文献   

2.
Benzohydroxamic acid (BHA) is a competitive inhibitor of the sea urchin sperm peroxidase. We now report that addition of BHA to fertilization cultures of Arbacia punctulata promotes polyspermy. This effect is dose and sperm density dependent. The cortical reaction (elevation of the fertilization envelope) is not retarded by BHA. BHA must be added to the cultures before the eggs complete the cortical reaction at 60 sec post insemination in order to induce polyspermy. Since sea urchin eggs release H2O2 during the cortical reaction at fertilization, these findings support our hypothesis that the sperm peroxidase has a functional role in helping to prevent polyspermy.  相似文献   

3.
The normal elevation of the fertilization membrane and the establishment of the block to polyspermy are retarded in Arbacia punctulata eggs by specific protease inhibitors, soybean trypsin inhibitor (SBTI), leupeptin, and antipain. Ultrastructural observations show that the vitelline layer remains attached to the plasma membrane of fertilized SBTI treated eggs at numerous sites (cortical projections). Quantitive morphometric analysis indicates that the vitelline layer elevates from about 65% of the surface of SBTI treated eggs during the first 3 min post insemination. However, the vulnerability of SBTI treated eggs to refertilization (polyspermy) only declined during the subsequent gradual detachment of the vitelline layer from the cortical projections over the next 15 min. Antipain and leupeptin (10?5 to 10?3M) also promoted polyspermy in Arbacia eggs by a process of refertilization extending for a 10- to 15-min period after the initial monospermic insemination. Normal cleavage and development was obtained when eggs were placed in leupeptin and antipain (10?3M) after the fertilization membrane had elevated. The data indicate that the normal secretory function (or functions) of the cortical granule protease in establishing the block to polyspermy is retarded by these protease inhibitors, and that the vitelline layer is transformed into a mechanical barrier to prevent penetration by supernumerary sperm during its detachment from the plasma membrane of the egg. Furthermore, the vitelline layer in unfertilized eggs appears to be a mosaic structure, with sperm receptor sites localized in regions of the egg's surface, which give rise to cortical projections in the presence of SBTI.  相似文献   

4.
Jellyfish eggs neither undergo apparent cortical reaction nor show any significant change in the membrane potential at fertilization, but nevertheless show monospermy. Utilizing the perfectly transparent eggs of the hydrozoan jellyfish Cytaeis uchidae, here we show that the polyspermy block is accomplished via a novel mechanism: a collaboration between Ca2+ and mitogen-activated protein kinase (MAPK). In Cytaeis, adhesion of a sperm to the animal pole surface of an egg was immediately followed by sperm–egg fusion and initiation of an intracellular Ca2+ rise from this site. The elevated Ca2+ levels lasted for several minutes following the sperm–egg fusion. The Ca2+ rise proved to be necessary and sufficient for a polyspermy block, as inhibiting a Ca2+ rise with EGTA promoted polyspermy, and conversely, triggering a Ca2+ rise by inositol 1,4,5-trisphosphate (IP3) or excess K+ immediately abolished the egg’s capacity for sperm–egg fusion. A Ca2+ rise at fertilization or by artificial stimulations evoked dephosphorylation of MAPK in eggs. The eggs in which phosphorylated MAPK was maintained by injection of mRNA for MAPK kinase kinase (Mos), like intact eggs, exhibited a Ca2+ rise at fertilization or by IP3 injection, and shut down the subsequent sperm–egg fusion. However, the Mos-expressing eggs became capable of accepting sperm following the arrest of Ca2+ rise. In contrast, addition of inhibitors of MAPK kinase (MEK) to unfertilized eggs caused MAPK dephosphorylation without elevating Ca2+ levels, and prevented sperm–egg fusion. Rephosphorylation of MAPK by injecting Mos mRNA after fertilization recovered sperm attraction, which is known to be another MAPK-dependent event, but did not permit subsequent sperm–egg fusion. Thus, it is possible that MAPK dephosphorylation irreversibly blocks sperm–egg fusion and reversibly suppresses sperm attraction. Collectively, our data suggest that both the fast and late mechanisms dependent on Ca2+ and MAPK, respectively, ensure a polyspermy block in jellyfish eggs.  相似文献   

5.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

6.
The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a complex series of membrane potential and resistance changes that occur concomitant with gamete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two approaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: (1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and (2) refertilization of fertilized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artificial activation with 5 μM A23187 or by fertilization in the presence of 10 μM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50–400 msec), but minor (?10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block resulting from the secretion of the cortical granules.  相似文献   

7.
The mechanisms responsible for the plasma membrane associated block to polyspermy in mouse eggs were studied. Reinsemination experiments using zona-free eggs indicated that, after fertilization, the egg plasma membrane is altered such that sperm binding to the egg plasma membrane is blocked, except in the region of the second polar body. Activation of the egg with either ethanol or strontium chloride did not result in a block to polyspermic penetration, as artificially activated eggs displayed identical penetration levels as to nonactivated control eggs. The penetrability of activated eggs was not altered by the presence or absence of the zona pellucida during activation. Lectin staining for egg cortical granule material indicated that activation did cause cortical granule exocytosis; however, activated eggs remained penetrable. These data support the following conclusions: (1) an alteration in the ability of the egg plasma membrane to allow sperm adherence accounts for the block to polyspermy; (2) establishment of the plasma membrane block to polyspermy is sperm dependent, since artificial egg activation does not result in a block response; (3) the contents of the egg's cortical granules do not play a role in the establishment of the plasmalemma block response. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Summary A method histochemical localization of prostaglandin synthetase using DAB, potassium cyanide and polyunsaturated fatty acid has been revised. The arachidonic acid-induced DAB oxidation observed in the secretory epithelium of sheep vesicular glands and in collecting tubules as well as interstitial cells of rabbit kidney medulla was found to be insensitive to antiinflammatory cyclooxygenase (formerly referred as prostaglandin synthetase) inhibitors, such as indomethacin, aspirin, mefenamic acid and paracetamol, whereas aminotriazole caused complete inhibition of the reaction. Furthermore, DAB was oxidized in the presence of polyunsaturated fatty acids inconvertible to prostaglandins (linoleic and linolenic acid) as well as in the presence of H2O2 — in the latter case reaction possessed identical features with that induced by fatty acids. Ultrastructurally, the reaction product was localized on the membranes of nuclear envelope and endoplasmic reticulum. On the ground of the results obtained a hypothesis is presented, that the polyunsaturated fatty acid-induced DAB oxidation is due to a peroxidatic activity of the investigated tissues. Possible relations between such peroxidatic activity and prostaglandin biosynthesis are discussed.  相似文献   

9.
The presence of peroxidatic activity of catalase in eggs of the sea urchins Hemicentrotus pulcherrimus and Temnopleurus toreumaticus was investigated by the ultrastructural cytochemical techniue and by biochemical assay on homogenates of eggs from before fertilization to the 2-cell stage. Biochemical assays showed that the unfertilized eggs had strong catalase activity whereas fertilized eggs had weak activity owing to the rapid decrease of activity after fertilization. The activity did not change from immediately after fertilization to the 2-cell stage. Cytochemical examination showed that the peroxidatic activity of catalase was mainly localized in the lamellae in the cortical granules. Disintegrated cortical granules with no lamellae and substances in the perivitelline space derived from breakdown of the cortical granules had no peroxidatic activity of catalase.  相似文献   

10.
《The Journal of cell biology》1993,123(6):1431-1440
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N- acetylglucosaminidase found in cortical granules was identified as beta- hexosaminidase B, the beta, beta homodimer. Inhibition of N- acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase- binding site, accounting for the block in sperm binding to the zona pellucida.  相似文献   

11.
Sea urchins have elaborated multiple defenses to assure monospermic fertilization. In this work, we have concentrated on a study of the mechanism(s) by which hydrogen peroxide (H2O2) prevents polyspermy in Arbacia punctulata. We found that it is not H2O2 but probably hypochlorous acid/hypochlorite (HOCl/OCl?) derived from H2O2 that is toxic to the supernumerary sperm. The spermicidal activity of H2O2 is potentiated by at least one order of magnitude by cupric ions (Cu2+). This increased toxicity is not due to the formation of hydroxyl radicals (·OH) because ·OH scavengers did not counteract the activity of Cu2+. More-over, substitution of Cu2+ by ferrous ions (Fe2+), which are known to cause formation of ·OH from H2O2, had no effect on fertilization even at 102?103 times higher concentrations. In contrast, 3-amino-1,2,4-triazole (AT), an HOCl/OCl? scavenger, totally reversed the toxic effects of Cu2+. Furthermore, we found that HOCl/OCl? is generated in solutions of H2O2 and Cu2+ in the presence of 0.5 M NaCl and that its accumulation is abolished by AT. Thus it is possible that the antifertility properties of copper are due to its ability to mediate formation of HOCl/OCl?. HOCl/OCl? generated by Cu2+ from H2O2 and Cl?, a low concentration of exogenously added HOCl/OCl?, or increased concentrations of H2O2 has similar inhibitory effects on the fertilization process in sea urchins. Therefore, we suggest that polyspermy is prevented by the action of a myeloperoxidase that affects the formation of HOCl/OCl? from the Cl? present in sea water through reaction with H2O2 generated by the newly fertilized egg.  相似文献   

12.
For free-spawning organisms that release gametes into the sea, sperm limitation (too few sperm to fertilize all eggs) is a major factor limiting reproductive success. Given such circumstances, the presence of several mechanisms to prevent polyspermy (too many sperm) may seem paradoxical; however, a growing body of data suggests that natural fertilization levels, though variable, can routinely be high. Under such conditions, polyspermy is much more likely. The tension between sperm limitation and polyspermy represents sexual conflict because males, in competing to fertilize as many eggs as possible, can impose lethal costs on eggs if multiple sperm gain entry. Here we present data for a marine invertebrate indicating high levels of polyspermy under sperm-limited conditions. When the sea urchin Evechinus chloroticus was induced to spawn in situ, mean rates of polyspermy were [Formula: see text], and polyspermy was recorded at rates as high as 62.7%. Polyspermy was nearly always present, even when fertilization rates were <50%, confirming predictions that it should be present under sperm-limited conditions. Both sperm limitation and polyspermy imposed substantial reproductive costs, and we conclude that both sexual conflict related to polyspermy and sperm limitation have been simultaneous strong selective forces shaping the evolution of reproductive traits in the sea.  相似文献   

13.
We have examined living and fixed gametes and early embryos of surf clams, sea urchins, and hamsters stained with the supravital dyes Hoechst 33342 for DNA and 3,3′-dihexyloxacarbocyanine iodide (DIOC6) for mitochondria and endoplasmic reticulum. Hoechst staining (10 μM) was confined exclusively to egg and sperm chromatin and, in living marine specimens, did not interfere with sperm motility, fertilization, or nuclear activity during meiosis or early embryogenesis. Although Hoechst staining did not appear to affect the motility of hamster sperm, only zonae-free eggs inseminated. Because chromatin retained Hoechst 33342 stain during fertilization, the paternally and maternally derived chromosomes of living and fixed preparations fluoresced and their number, organization, and location within the zygote cytoplasm could be determined. Hence, polyspermy and other nuclear abnormalities were amenable to examination in these stained preparations. DIOC6 staining (8.7 μM) was restricted primarily to the mitochondria of spermatozoa. Eggs stained with DIOC6 (0.87 to 8.7 μM) were brightly fluorescent because of their size and the presence of large numbers of mitochondria and other DIOC6-positive organelles. Sea urchin and surf clam sperm stained with DIOC6 fertilized unstained eggs and the location of the incorporated sperm mitochondrion up to first cleavage was followed. Although hamster sperm stained with DIOC6 were less motile than unstained sperm, they were capable of inseminating only zonae-free eggs. These observations demonstrate that staining with supravital fluorochromes provides a rapid and useful method to analyze macromolecular and organelle changes in a variety of living and fixed gametes and embryos.  相似文献   

14.
The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, and ZP3), of which ZP2 is proteolytically cleaved after gamete fusion to prevent polyspermy. This cleavage is associated with exocytosis of cortical granules that are peripherally located subcellular organelles unique to ovulated eggs. Based on the cleavage site of ZP2, ovastacin was selected as a candidate protease. Encoded by the single-copy Astl gene, ovastacin is an oocyte-specific member of the astacin family of metalloendoproteases. Using specific antiserum, ovastacin was detected in cortical granules before, but not after, fertilization. Recombinant ovastacin cleaved ZP2 in native zonae pellucidae, documenting that ZP2 was a direct substrate of this metalloendoprotease. Female mice lacking ovastacin did not cleave ZP2 after fertilization, and mouse sperm bound as well to Astl-null two-cell embryos as they did to normal eggs. Ovastacin is a pioneer component of mouse cortical granules and plays a definitive role in the postfertilization block to sperm binding that ensures monospermic fertilization and successful development.  相似文献   

15.
The jellyless eggs of Bufo japonicus or those from which the vitelline coats (VCs) had been removed (denuded eggs) were electrically activated. The exudate that accompanied egg activation (AEX) was collected to study its role in preventing polyspermy. When dejellied (but VC intact) eggs were treated with AEX, the eggs lost not only fertilizability but also the sensitivity of their VCs to the sperm lysin. By contrast, denuded eggs treated with AEX were fertilizable; even activated eggs were highly fertilizable, provided they were deprived of their VCs and inseminated 30 min after activation. The loss of sensitivity to sperm lysin occurred in VCs 3-5 min after activation either in De Boer's or 1/20 De Boer's solution. The activity of AEX to reduce the sensitivity of VCs to sperm lysin was heat-sensitive and dependent on Ca2+, but it was not affected at all by the variety of protease inhibitors used. The activity was lost by the preincubation of AEX with fragmented VCs in the presence of Ca2+, suggesting Ca(2+)-dependent binding of AEX molecules to the VC at fertilization. Immunocytochemical studies employing anti-AEX rabbit serum showed that the pertinent antigens were localized in the cortical granules of unfertilized eggs and in both the inner surface of VCs and the perivitelline space of fertilized eggs. We conclude that the AEX-induced loss of lysin sensitivity in VCs and the deposition of cortical granule materials on the inner wall of VCs constitute a slow and permanent block to polyspermy.  相似文献   

16.
Many ascidians live in clumps and usually release sperm before the eggs. Consequently, eggs are often spawned into dense clouds of sperm. Because fertilization by more than a single sperm is lethal, ascidians have evolved at least two successive blocks to polyspermy: the rapid release of a glycosidase that inhibits sperm binding to the vitelline coat (VC) and a subsequent change in membrane potential that prevents supernumerary sperm–egg fusion. This paper shows that (1) these two blocks can be uncoupled by the use of suramin, and (2) most of the glycosidase appears to be from the follicle cells, which are accessory cells on the outside of the egg VC. Phallusia mammillata eggs initially bind numerous sperm but, after the glycosidase is released, only a few additional sperm bind. Intact eggs in 20 μM suramin release glycosidase, but the electrical response is inhibited; sperm swim actively and bind to the VC but fail to penetrate. Suramin treatment is completely reversible; intact eggs exhibit the electrical response an average of 11 minutes after the drug is washed out. Sperm must contact the follicle cells before passing through the VC; eggs with the VC removed and fertilized in the presence of 20 μM suramin show the electrical response 35% of the time, thus VC removal enhances sperm entry. Like the intact eggs, 100% of the naked eggs respond electrically to fertilization after the drug is washed out. Follicle cells that are isolated by calcium magnesium free seawater and then returned to complete seawater release N-acetylglucosaminidase activity in response to sperm. Thus, these eggs have two blocks to polyspermy that operate in sequence: an early first block resulting from enzymatic modification of the VC by N-acetylglucosaminidase released primarily from follicle cells and a second electrical block operating at the egg plasma membrane level and requiring sperm–egg fusion. Mol. Reprod. Dev. 48:137-143, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity-two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope.  相似文献   

18.
Polyspermy blocking, to ensure monospermic fertilization, is necessary for normal diploid development in most animals. We have demonstrated here that monospermy in the clawed frog, Xenopus tropicalis, as well as in X. laevis, is ensured by a fast, electrical block to polyspermy on the egg plasma membrane after the entry of the first sperm, which is mediated by the positive‐going fertilization potential. An intracellular Ca2+ concentration ([Ca2+]i) at the sperm entry site was propagated as a Ca2+ wave over the whole egg cytoplasm. In the X. tropicalis eggs fertilized in 10% Steinberg's solution, the positive‐going fertilization potential of +27 mV was generated by opening of Ca2+‐activated Cl?‐channels (CaCCs). The fertilization was completely inhibited when the egg's membrane potential was clamped at +10 mV and 0 mV in X. tropicalis and X. laevis, respectively. In X. tropicalis, a small number of eggs were fertilized at 0 mV. In the eggs whose membrane potential was clamped below ?10 mV, a large increase in inward current, the fertilization current, was recorded and allowed polyspermy to occur. A small initial step‐like current (IS current) was observed at the beginning of the increase in the fertilization current. As the IS current was elicited soon after a small increase in [Ca2+]i, this is probably mediated by the opening of CaCCs. This study not only characterized the fast and electrical polyspermy in X. tropicalis, but also explained that the initial phase of [Ca2+]i increase causes IS current during the early phase of egg activation of Xenopus fertilization.  相似文献   

19.
Fertilization by more than one sperm in sea urchins inevitably leads to uneven division and death of the embryo. We provide evidence for a block against this polyspermy involving the hydrogen peroxide release by the egg during fertilization that is triggered by entry of the successful sperm. Polyspermy in 100% of fertilized eggs was demonstrated when catalase was added to destroy hydrogen peroxide immediately after fertilization. Soybean trypsin inhibitor, another polyspermic agent, is shown to prevent the formation of hydrogen peroxide in the fertilized egg. This suggests that the protease released from egg cortical granules during fertilization plays a role in the hydrogen peroxide generating system.  相似文献   

20.
Propranolol, a β-adrenergic receptor blocker, is found to induce polyspermy in sea urchin eggs. Unfertilized sea urchin eggs treated for 10 min with 50 μM of propranolol, and then inseminated, become polyspermic and show a fertilization envelope which is barely visible to the light microscope. Examination of treated eggs by transmission and scanning electron microscopy shows that the drug does not alter the cortex of the unfertilized egg. However, after insemination an incomplete cortical reaction occurs. This might well account for both polyspermy and the defective elevation of the fertilization envelope. Since the effects of the drug are reversed by simultaneous treatment with adrenalin, perhaps propranolol interferes with the monoaminergic system that has been proposed to be active. The involvement of the monoaminergic system in the fertilization process is present in the sea urchin egg. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号