首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spleen of Psammophis sibilans is composed mainly of red pulp, the white pulp being poorly developed. The white pulp lymphoid clusters are scattered throughout the organ and contain lymphocytes, reticular cells, and some plasma cells. The red pulp consists of reticular cells intermingled with blood cells, sinusoids, and melanomacrophage centers (MMCs). Filtering of particulate matter from the blood occurs in the red pulp by phagocytes of the pulp cord. MMCs are formed by the association of free macrophages that have phagocytosed some blood cells. Early filtering of particulate matter by the phagocytes of the pulp cords may allow for more efficient phagocytosis of erythrocytes by the MMCs. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The spleen of sea bass (Dicentrarchus labrax) is composed mainly of red pulp, whereas the white pulp is poorly developed. The red pulp consists of clear reticular cells intermingled with blood cells, sinusoids, and melanomacrophage centers (MMCs). The MMCs are enclosed by an interrupted connective tissue capsule and show some areas in continuity with the adjacent pulp. The MMCs are formed by the association of free macrophages that have phagocytosed some blood cells. Sparse white pulp is diffuse, forming a cuff around the pulp arteries and MMCs, or occurring in small groups between the splenic cords. A longitudinal artery and vein, lying side by side, extend the length of the spleen. Frequently the capillaries are surrounded by a sheath of macrophages or ellipsoids. These macrophages may contain erythrocytes in varying degrees of degradation. Lymphopoiesis and plasmapoiesis occur in the sparse lymphold areas. Abundant plasma cell groups may indicate the presence of antibody production.  相似文献   

3.
The spleen of Agama stellio is composed mainly of red pulp; the white pulp is poorly developed, and its clusters are scattered throughout the organ and contain lymphocytes, reticular cells, and some plasma cells. The red pulp consists of clear reticular cells intermingled with blood cells, sinusoids, and pigment cells. The spleen of Chalcides ocellatus is encapsulated by connective tissue and is composed of white and red pulp. The white pulp consists of lymphoid tissue that surrounds the central arterioles, forming the periarteriolar lymphocyte sheath (PALS). The red pulp is composed of a system of venous sinuses and cords. The results of various histochemical procedures designed to demonstrate mucosubstances, proteins, and nucleic acids indicate that the spleen in these species resembles the mammalian spleen. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The presence and ultrastructural features of reticulum cells and macrophages were studied in the spleen of the dogfish Scyliorhinus canicula. Three morphologically distinguishable regions of the spleen were identified: the white pulp, the red pulp and the ellipsoids. In all three, the splenic parenchyma was a meshwork supported by reticulum cells and fibres. Reticulum cells in both the white and the red pulp are irregular elements, the processes of which are joined by cell junctions and embrace developing reticular fibres. The ellipsoids of the dogfish spleen are terminal branches of the splenic arteries of the white pulp, with a sheath consisting of reticulum cells, reticular fibres, ground substance, macrophages and occasional lymphocytes. Isolated melanomacrophages also occur in the ellipsoid walls as well as in the red pulp. In both the white and the red pulp phagocytic reticulum cells, and macrophages appear frequently forming cell associations with surrounding blood cells, mainly lymphocytes. The functional significance of the ellipsoids and the cell-cell clusters of the white and the red pulp is discussed in relation to the immune capacities demonstrated in elasmobranchs.  相似文献   

5.
The red pulp's argentophil reticular cell network of the spleen is composed by 3 types of fixed cells: 1. the primitive reticular cell, slightly argentophil; 2. the small reticular cell; 3. the larger reticular cell, strongly argentophil and phagocytic. This latter shows the classical morphological characteristics attributed to the reticular cells of the spleen. The large argentophil reticular cell may become free, constituting a 4th cell type, the free macrophage. A 5th reticular cell type is the dendritic cell found into the lymphatic follicles of the white pulp. The argentophil reticular cells of the red pulp assemble together to form the reticular cells' network, that occurs inside the red pulp cords. The primitive and the small reticular cell form the fundamental network on which the large cells are apposed. The reticular cells of this network maitain relationship with the arterial terminal vessels of the red pulp, being responsible by the ellipsoid structure. In those arteriolar segments without ellipsoid and in those mammalian species devoid of ellipsoid, the white pulp reticular cells, that surround the blood vessel as a part of the lymphoid periarteriolar sheath, mix with the red pulp's reticular cells and both can hardly be discriminated. The ellipsoids are formed by large argentophil cells arranged in concentrical layers around its lumen that sometimes appear devoid of endothelial lining cells. The red pulp's argentophil reticular cells, either the small or the large ones, contributed to the structure of the splenic sinuses' wall; its thin processes surround the sinus wall outside the endothelial lining cell as fibrillar structures that cross the back side of the lining cells. Two or more argentophil reticular cells send fibrillar processes to a single sinus. The perisinusal reticular cells may send a process between adjacent endothelial lining, cells that insinuate and attain the sinus lumen; this process becomes thick and eventually, the reticular cell enter the sinus lumen as a free macrophage. The argentophil reticular cells of the red pulp make connection between the capsule or the trabeculae and the reticular cell network. The endothelial lining cells of the splenic sinuses are not argentophil.  相似文献   

6.
7.
The purpose of this study was to clarify erythrocyte shapes in splenic cords of living mouse spleens, using our in vivo cryotechnique followed by scanning (SEM) or transmission (TEM) electron microscopy. Some spleens of mice were quickly frozen by the in vivo cryotechnique while their hearts were beating under anesthesia. In contrast, other spleens were prepared by an in vitro freezing method after they were taken out from the abdominal cavity. They were routinely freeze-substituted, and prepared for SEM and TEM. A few mouse spleens were also routinely fixed and embedded in Quetol-812 to obtain conventional morphology. Erythrocytes in living mouse spleens showed a variety of shapes with narrow spaces between them, trapped among reticular fiber tissues. Similar various shapes of erythrocytes were kept in the red pulp even after blocking normal blood circulation, as prepared by the in vitro freezing method. In comparison to the above-mentioned findings, some erythrocytes were changed to biconcave discoid shapes by the conventional immersion fixation with chemical fixatives. They also showed wide spaces between each other among reticular fiber tissues. Such conventional morphological studies could hardly reveal the in vivo shapes of erythrocytes in functioning spleens with normal blood circulation. In contrast, the various shapes of erythrocytes in the functioning spleens were demonstrated by our in vivo cryotechnique. It is suggested that most erythrocytes congesting in spleens keep their original configuration in spite of microenviromental alteration in splenic blood circulation.  相似文献   

8.
鲤鱼和鲫鱼脾脏显微结构和亚显微结构的研究   总被引:7,自引:0,他引:7  
鲤鱼和鲫鱼的脾脏中都没有小梁,其红髓和白髓是混合的。脾脏中都有椭圆体,其末端向脾髓开放。脾髓的纤维网眼中缺乏血管壁,椭圆体毛细血管中的血液可直接流入脾髓网状结缔组织的腔隙中。腹腔注射墨汁的鲫鱼,2小时后即可在椭圆体的巨噬细胞中看到碳粒的积累,可见脾脏的过滤作用主要在椭圆体中进行。在注射墨汁的鲫鱼脾脏中,黑色素巨噬细胞中心比未经注射鱼的脾脏明显,且数量增多,它和哺乳动物淋巴结和脾脏中的生发中心结构和功能都不相同。    相似文献   

9.
Despite new information concerning functional morphology of spleen, there are still some inaccuracies mostly regarding the spleen blood circulation. Billroth’s (splenic) cords are formed from three-dimensional network of fibroblastic reticular cells located among branched sinuses. Results from our study using scanning electron microscopy confirm an intimate contact between adjacent reticular cells and erythrocytes. Arterial terminals can be observed in the Billroth’s cords. The wall of sinuses reminds a sieve and it is lined with a special type of endothelium. In electron microscope, endothelial cells look like rods oriented parallel to the longitudinal axis of sinuses. Based on our observations fibroblastic reticular cells change to fixed phagocytes under no circumstances, hence they do not participate in phagocytosis. They may have a recognition function for cells circulating around them. According to our opinion, the open and the closed blood circulation are present in the human spleen simultaneously. Blood flowing in the closed circulation can help “absorption” of extra-vascular liquid and the blood elements into the vascular lumen. Due to sporadic occurrence of smooth muscle cells in the capsule and trabeculae, we assume that human spleen is not a blood reservoir, unlike the spleen in some other animals.  相似文献   

10.
Summary The ultrastructure of splenic tissue of non-immunized turtles, Mauremys caspica, shows two areas, namely, the white pulp which is lymphoid in nature, and the red pulp which is formed by cell cords and sinusoids. Between both areas there is always a marginal zone with gaps through which cells leak. In the white pulp, there are two blood vessel types; one with muscled walls, and the other showing thinner walls sheathed by reticular cells. Reticular cells constitute a network where there occur dendritic macrophages, lymphoblasts and small and medium lymphocytes. Mature plasma cells are scarce in the white pulp.  相似文献   

11.
Summary The jugular bodies in adult Rana pipiens, are surrounded by a capsule of mesothelium and connective tissue, and their parenchyma consists of cell cords arranged in a sinusoidal network. The cell cords are formed by irregular reticular cells, showing numerous filaments and joined together by zonulae adhaerents. The intercellular spaces are filled by reticular fibres and free cells. These latter are small and medium lymphocytes, lymphoblasts, and developing and mature plasma cells. Additionally, free macrophages, neutrophils and acidophils also occur. Sinusoidal blood vessels show thin walls with numerous filaments and pinocytotic vesicles. They exhibit a discontinuous basement membrane, and tight junctions frequently occur between endothelial cells. Occasionally, lymphatic vessels are found and the innervation is principally vasomotor, although nerve endings appear remarkably near reticular cells and lymphocytes. The jugular bodies of adult R. pipiens are plasma cell and antibody-forming organs, whose functional significance is discussed in relation to their ultrastructural organization.  相似文献   

12.
A histological study of the spleen of the Brown-headed cowbird, Molothrus ater, is presented. One of the most striking differences from the mammalian spleen is the lack of trabeculae and of smooth muscle in the capsule which would suggest that the spleen is not an organ of storage or pumping of blood. Without trabeculae to foster the close association of the major arteries and veins, these vessels take separate courses. Their support is provided by elaboration of the collagenous and reticular fibres of the stroma. A peculiar ovoid structure, the ampulla, carries the blood from the terminal arterioles of the white pulp to both the sinusoids and the reticular cords of the red pulp so that both open and closed circulations are seen but the open circulation predominates. The ampulla has perforated walls consisting of a simple cuboidal endothelium surrounded by a dense reticular sleeve. Leucocytes were seen passing through the holes in the walls of the ampullae by diapedesis. It is suggested that the ampullae may be contractile and act as sphincters controlling the flow of blood through the spleen. The major functions of the spleen appear to be haemopoiesis, production of antibodies, and filtration of blood.  相似文献   

13.
Spleens of three species of Antarctic seals with different diving habits (Weddell seal, crabeater seal, and fur seal) have been studied with histological, histochemical, and electron microscopic methods. The spleens can be classified as nonsinusoidal, with capsule and trabeculae rich in innervated smooth muscle cells. The trabecular system is particularly well developed in the deep- and long-diving Weddell seal. As in other mammals the pulp can be divided into white and red pulp. In the white pulp, periarteriolar lymphatic sheaths and secondary lymphatic nodules occur; both are surrounded by a marginal zone rich in macrophages and eosinophils. The nodules can be observed frequently, which is in accordance with abundance of plasma cells in the red pulp. Well-developed white pulp and numerous plasma cells and eosinophils obviously reflect a high load of nematodes, which have mainly been found in lung and stomach. Additionally, in the red pulp morphological evidence for the following functions has been found: destruction of erythrocytes, erythropoiesis, and thrombopoiesis. In respect to blood flow through the red pulp, we interpret our observations in the following way: terminal branches of arterioles open into the space between the fibroblastic reticulum cells; blood draining from here is collected into pulp veins, which are mainly found near the trabeculae. Thus, the seals have an open vascular compartment in their spleens, as also occurs in the cat. The red pulp is innervated by numerous nerve fibers that seem to include both cholinergic and adrenergic ones. The target cells of these fibers seem to be the fibroblastic reticulum cells, whose state of contraction may influence the direction of blood flow through the red pulp.  相似文献   

14.
Summary The structural characteristics and cellular elements of the boundary zone between the white and red pulp of the human spleen were studied by SEM and TEM. The boundary zone consisted of both the perifollicular region and the region surrounding the periarterial lymphoid sheath. The perifollicular region was further subdivided into two, equally thick layers. The inner half layer of the perifollicular region outside the mantle zone of the lymph follicle was composed of tightly packed medium-sized lymphocytes, interspersed by a small number of reticular cells. The outer half layer was composed of a reticular cell meshwork containing blood cells in vessels, which communicated with the splenic cords of the red pulp. Intermittent rows of reticular cells distinguished the outer from the inner half layer. The region surrounding the periarterial lymphoid sheath revealed the same type of reticular cell meshwork as the outer half layer of the perifollicular region. Capillary ends opened into the reticular cell meshwork, which suggested the presence of an open circulation in the human spleen. A deep lymphatic vessel which communicated with the periarterial lymphoid sheath was noted.  相似文献   

15.
Summary In the rat spleen cells are found staining with aldehyde fuchsin (AF-cells). Most of these cells are localized at the periphery of the follicles, at the inner border of the marginal sinus. They probably develop in situ. Comparable cells occur in other lymphoid organs. They are able to phagocytize, and resemble also histochemically red pulp macrophages. The aldehydefuchsinophilic granules do not stain for mucopolysaccharides. On the ultrastructural level the aldehydefuchsinophilic granules are represented by cytoplasmic bodies with a faintly granulated matrix. Because of their single membrane and the varying positive reaction on acid phosphatase these bodies are considered to be secondary lysosomes or residual bodies. They contain different materials of unknown endogenous origin. In non-immunized animals the AF-cells fail to show the characteristic dendritic protrusions and infoldings of antigen trapping cells.The cells possess some characteristics of reticular cells e.g. association with reticulin, and electron dense patches on the innerside of the cell membrane at the contact areas. They can be classified among the phagocytic reticular cells forming part of the metalophilic cells in the spleen.  相似文献   

16.
Macrophages are extremely heterogeneous mononuclear phagocytes widely distributed throughout the body. They play unique roles in each organ where they reside. Among macrophage subsets, red pulp macrophages (RPMs) that localize in the splenic red pulp, are critical for maintenance of blood homeostasis by actively phagocytosing injured and senescent erythrocytes and blood‐borne particulates. Recent evidence indicates that RPMs are mainly generated during embryogenesis and are maintained during adult life. Furthermore, the cell‐intrinsic and ‐extrinsic factors (namely, Spi‐C, IRF8/4, heme oxygenase‐1, and M‐CSF) that regulate the development and survival of RPMs have been identified. Although the immunological properties of RPMs have yet to be elucidated fully, pioneering studies have demonstrated that these cells are capable of inducing differentiation of regulatory T cells via expression of transforming growth factor‐β and secrete a large amount of type I interferons during parasitic infections. In this review, we describe recent advances in understanding of the functions and development of RPMs.  相似文献   

17.
18.
Parenteral administration of methylcellulose causes massive splenomegaly and hemolytic anemia in rats. The red pulp of the spleen is markedly cellular due mainly to: (1) large numbers of voluminous free macrophages containing methylcellulose-induced vacuoles, (2) an increase in the number of plasma cells and (3) stasis of blood evidenced by a large number of erythrocytes and platelets in vessels, sinuses and cords. White pulp changes are usually less marked. Here the major change is the presence of macrophages containing methylcellulose-induced inclusions. The slow circulatory time in the spleen and the increase in macrophages may cause the hemolytic anemia observed in these animals.  相似文献   

19.
The spleen ofMustelus schmitti is described, being an elongated organ running dorsally along the stomach and surrounded by a thin capsule without muscular tissue. The classical division between red and white pulps was evident, with a marginal sinus surrounding the latter. Numerous ellipsoids were located in the red pulp, inside nodular-like structures, or in the marginal sinus. Two types of reticular cells were apparent as well as macrophages and melanomacrophages. Hemopoiesis was present through immature and mature cells of the erythroid and thrombocytoid lineages, but no evidence of granulopoiesis was found. Comparison amongMustelus species and between chondrichthyan and mammalian spleens are made.  相似文献   

20.
We describe the structure of the spleen of the African lungfish Protopterus annectens in freshwater conditions, and after 6?months of aestivation. The spleen is formed by cortical tissue that surrounds the splenic parenchyma. The cortex is a reticulum that contains two types of granulocytes, developing and mature plasma cells, and melanomacrophage centres (MMCs). The parenchyma is divided into lobules that show a subcapsular sinus and areas of red pulp and white pulp. Red pulp contains vascular sinuses and atypical cords formed by delicate trabeculae. White pulp also contains vascular sinuses and cords. Structural data indicate that red pulp is involved in erythropoiesis, destruction of effete erythrocytes, and plasma cell differentiation. White pulp appears to be involved in the production of immune responses. Macrophages and sinus endothelial cells constitute the reticulo-endothelial system of the spleen. After aestivation, the number of MMCs increases, and spleen tissue is infiltrated by lymphocytes, granulocytes, and monocytes. Also, white pulp is reduced, and sinus endothelial cells undergo vacuolar degeneration. Lungfish spleen shares structural characteristics with secondary lymphoid organs of both ectothermic and endothermic vertebrates, but appears to have evolved in unique ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号