首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. A. Tell 《Zoo biology》1997,16(6):505-518
The metabolism and time courses for clearance of radiolabeled estradiol and testosterone were studied in the female cockatiel (Nymphicus hollandicus) using a simple technique of solubilizing dried fecal/urine matter in an aqueous solution. Carbon 14 radiolabeled estradiol and testosterone were injected intramuscularly and the urine and fecal matter collected for the pursuant 168 hr. The predominant radiolabel peak was found associated with the aqueous residue of the ether extracted aliquot for both hormones. High-performance liquid chromatographic (HPLC) separation of solubilized fecal/urine material collected during the first sampling interval (0–4 hr after injection) demonstrated that the majority of the excreted radiolabel was in the form of conjugated steroid metabolites in both the estradiol and testosterone injected birds. Subsequent hydrolysis of the aqueous residue of the ether extracted aliquots and HPLC characterized the estrogen and testosterone metabolites as being estrone/estradiol and a variety of androgen based moieties, respectively. By 24 hr postinjection, 79.4 and 79.1% of the original radiolabel was recovered in birds injected with estradiol and testosterone, respectively. These findings demonstrate that steroid hormone excretion in the cockatiel is a rapid and efficient process that is 79% complete by 24 hr and that the primary excretion products are conjugated metabolites. This study also supports the concept that fecal/urine collection is a practical and efficient method of monitoring sex steroid excretion and provides additional evidence that simple solubilization of fecal matter is a sufficient and efficient method for processing feces for subsequent metabolite measurements. Zoo Biol 16:505–518, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The excretion of three gonadal steroids was studied in the urine and feces of female cotton-top tamarins (Saguinus oedipus oedipus). Each steroid, 14C-estrone, 14C-estradiol, and 14C-progesterone, was injected into a separate female cotton-top tamarin. Urine and feces were collected at 8 hr intervals for 5 days on the three tamarins. Samples were analyzed to determine the proportion of free and conjugated steroids. Steroid excretion patterns were determined by sequential ether extraction, enzyme hydrolysis, and chromatography. Labeled estrone was excreted in a slow and continuous manner into the urine (57%) and feces (43%) with 90% of the steroid conjugated. The nonconjugated form had an elution profile identical to 3H estrone, but the conjugated portion was not completely hydrolyzed by enzyme. Labeled estradiol was excreted primarily in the urine (87%) and was released rapidly. Over 90% of the injected 14C-estradiol was excreted in urine as a conjugate, of which 41% was converted to an estrone conjugate and the remaining 59% was excreted as a polar estradiol conjugate. Labeled progesterone was excreted primarily in the feces (95%), 61% of which was free steroid. Four to six individual peaks of radioactivity were found when using celite chromatography and high performance liquid chromatography (HPLC), indicating that progesterone is metabolized into several urinary and fecal metabolites. One of these peaks matched 3H-progesterone and others may be pregnanediols, pregnanetriols, and 17-hydroxyprogesterone. These steroidal excretion patterns help explain the atypical hormonal patterns seen during the tamarin ovarian cycle.  相似文献   

3.
We wished to develop an efficient, noninvasive method for monitoring ovarian function in domestic and nondomestic Felidae. We hypothesized that the method could be based on measurement of one of the major excreted estrogen metabolites. To identify and characterize the major excreted metabolites, a bolus of (14)C-estradiol was administered into the femoral vein of adult female cats. We measured the amounts of total radioactivity per unit time contained in unconjugated and conjugated estradiol metabolites, in conjugated metabolites that were hydrolyzable, and in those not hydrolyzable by beta Glucuronidase / aryl sulfatase (the enzyme). Radionuclide levels were determined in voided feces and urine, in jugular vein plasma, bile, contents of the duodenum, and in the small intestine. Metabolites of (14)C-estradiol were voided preferentially in feces and in equal amounts either as unconjugated estradiol or as conjugates not hydrolyzable by the enzyme. In plasma, conjugated estrogens comprised an increasing proportion of the total radioactivity during the first 40 min after administration. Plasma pools of samples from 0.5 to 30 min and 40 to 360 min contained a monoconjugate and a diconjugate, respectively; both were hydrolyzable by the enzyme. Bile and intestinal samples were collected at 360 min after administration. In the bile, 99% of the total radioactivity was in conjugated compounds, only 20% of which were not hydrolysable by the enzyme. The proportion of unconjugated metabolites increased to 18% in the duodenum and to 45% in the small intestine. The major conjugates contained in voided feces not hydrolyzable by the enzyme were estradiol sulfate (m/z = 351.6836), distributed as the 3-sulfate (20%) and 17-sulfate (80%); of the latter, 70% were 17alpha- and 30% 17beta-estradiol sulfates. These data document the fate of estradiol in the circulation of the cat, they demonstrate that a large portion of the voided estradiol metabolites are not hydrolyzable by the enzyme, and account for those conjugates previously termed nonhydrolyzable.  相似文献   

4.
The excretion pattern of estradiol was studied in the slow loris Nycticebus coucang) and the ring-tailed lemur (Lemur catta) in order to compare steroid excretion in two representative prosimian species. Daily urinary estrone conjugate measurements in the female loris provided little information when applied over prolonged periods. As a result of these negative data, a metabolic study was performed to determine if estrogen excretion patterns in the slow loris differed from those in the lemur, where urinary assays proved a useful tool in characterizing reproductive cycles. Radio-labeled estradiol was injected intravenously, and serial urine and fecal collections were analyzed for radiolabeled metabolites. The results of these studies demonstrate that more than 92% of the radiolabel was excreted in the feces of the loris, in contrast to only 16% excreted in the feces of the lemur.  相似文献   

5.
Rabbits have been shown to excrete 6, 7-3H-estriol, its conjugates and metabolites preponderantly in the bile during the initial 4 hours following the I.V. injection of the labeled steroid. The amount of radioactivity excreted in the urine was 13 of that in the bile. Since in intact rabbits most of the injected radioactivity of 3H-estriol is excreted in the urine over a period of days (and very little in the feces), it appears that estriol and its conjugates and metabolites are involved in an efficient enterohepatic. circulation. In the bile, the preponderant metabolite of 3H-estriol was the 3-glucosiduronate. Even though the latter constituted a substantial part of the urinary metabolites, other conjugates and metabolites of estriol were present in considerable amounts. It is possible that the latter have resulted from gastro-intestinal and/or renal metabolism. Incubation of rabbit liver with estriol led to 75% conjugation with glucuronic acid in the 3-position.  相似文献   

6.
The first objective of the present study was to determine the metabolic form and rate of excretion of ovarian hormone metabolites in the urine and feces of female squirrel monkeys injected with radiolabeled progesterone (Po) and estradiol. The major portion of the urinary metabolites of both hormones was excreted within 16-24 hr post-injection. Estrogen and Po isotopes in feces exhibited an excretion peak at 16 hr post-injection. The majority of recovered radiolabel of both hormones was excreted in feces. Chromatographic separation of fecal extractions indicated that the major estrogen metabolites in feces are in the free as opposed to the conjugated form. The radioactivity and immunoreactivity for estrone and estradiol (E(1) and E(2), respectively) in eluates of fecal samples subjected to celite co-chromatography indicated that both free E(1) and E(2) exist as excretion products in the feces of female squirrel monkeys. The major radioactive peaks for Po metabolites showed peaks in the elution profile at or very near the Po standard, and corresponded with the celite co-chromatography elution profile of Po standard when subjected to enzyme immunoassay (EIA). The second objective was to validate the application of EIA systems to measure fecal metabolites. Reproductive events of one female squirrel monkey across one annual reproductive cycle are described using the endocrine profile generated from fecal steroid assays. Examination of this profile confirmed that longitudinal fecal sampling and steroid hormone metabolite measurement in feces was not only feasible and practical, but accurately detected known reproductive events as well.  相似文献   

7.
Limited data are available on long-term, seasonal changes in testicular steroidogenic activity in nondomestic felids, primarily because of the difficulties associated with longitudinal blood sampling (e.g., handling, restraint, anesthesia). Therefore, a noninvasive approach for assessing testicular androgen production was developed using the domestic cat (Felis catus) as a model. Two adult males were injected i.m. with 4 μCi14-testosterone to determine the time course and relative proportions of androgen metabolites excreted in urine and feces. Peak urinary radioactivity was detected 13 and 19 hr postinjection and accounted for ∼8% of the total radioactivity recovered. High performance liquid chromatography (HPLC) analysis detected multiple polar urinary metabolites, none of which eluted with the 3H-testosterone reference tracer. The majority of urinary testosterone metabolites consisted of nonenzyme-hydrolyzable, water-soluble (presumably conjugated) forms. In feces, radioactivity was detected in the first sample collected at 22 hr postinjection for both males, although peak metabolite excretion in one male was not observed until 61 hr postinjection. HPLC analysis detected several fecal metabolites consisting primarily of nonhydrolyzable, water-soluble forms (84.4 ± 0.9%) with some ether-soluble forms (15.6 ± 0.9%). None of the fecal androgen metabolites were associated with free testosterone. However, one or more of the water-soluble fecal metabolites was quantifiable using a commercially available testosterone radioimmunoassay. The biological relevance of this immunoactivity was confirmed in the domestic cat; concentrations were high in adult, intact males and nondetectable in intact females and castrated males and females. In addition, fecal androgen concentrations in a male Pallas' cat (Felis manul) exhibited seasonal fluctuations that corresponded with parallel changes in serum testosterone and ejaculate quality. These data indicate that testicular steroidogenic activity can be monitored non invasively in felids, providing a potentially valuable tool for endangered felid management to: (1) assess pubertal status, (2) determine the influence of season on reproduction, and (3) diagnose possible causes of sub- or infertility. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The purpose of this study was to validate noninvasive endocrine monitoring techniques for African wild dogs (Lycaon pictus) and to establish physiological validity of these methods by evaluating longitudinal reproductive-endocrine profiles in captive individuals. To determine the primary excretory by-products of ovarian steroid metabolism, [14C]-progesterone and [3H]-estradiol were co-administered to a female and all excreta were collected for 80 hr postinjection. Radiolabel excretion peaked ≤ 18 hr postinfusion, and progesterone and estradiol metabolites were excreted in almost equivalent proportions in urine (39.7 and 41.1%, respectively) and feces (60.3 and 58.9%, respectively). Most of the urinary metabolites were conjugated (estradiol, 94.3 ± 0.3%; progesterone, 90.4 ± 0.5%), so that immunoassays for pregnanediol-3α-glucuronide (PdG) and estrogen conjugates (EC) were effective for assessing steroid metabolites. Two immunoreactive estrogens (estradiol and estrone) and at least one immunoreactive progesterone metabolite (3α-hydroxy-5α, pregnan-20-one) were detected in feces. Urine and fecal samples were collected (1–3 times per week) for 1.5 yr from one adult female and two adult males to assess longitudinal steroid metabolite excretion. Overall correlation of urinary PdG to matched, same-day fecal progesterone metabolites immunoreactivity was 0.38 (n = 71, P < 0.05). Similarly, urinary EC was correlated (P < 0.05) with same-day fecal estrogen immunoreactivity (r = 0.49, n = 71). During pregnancy and nonpregnant cycles, copulation occurred at the time of peak (or declining) estrogen metabolites and increasing progesterone metabolites concentrations. Estrus duration was 6–9 days and gestation lasted 69 days with parturition occurring coincident with a drop in progesterone metabolites. Males exhibited seasonal trends in fecal testosterone excretion with maximal concentrations from July to September coincident with peak mating activity. Although these limited longitudinal hormone profiles should be interpreted cautiously, noninvasive gonadal steroid monitoring suggests that: (1) both female and male wild dogs may exhibit reproductive seasonality in North America, (2) females are monoestrous, and (3) peak testicular activity occurs between August and October coincident with mating behavior. From a conservation perspective, noninvasive endocrine monitoring techniques should be useful for augmenting captive breeding programs, as well as for developing an improved understanding of the physiological mechanisms underlying reproductive suppression in response to social and ecological pressures. Zoo Biol 16:533–548, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
To develop non-invasive techniques for monitoring steroid stress hormones in the feces of free-living animals, extensive knowledge of their metabolism and excretion is essential. Here, we conducted four studies to validate the use of an enzyme immunoassay for monitoring fecal cortisol metabolites in snowshoe hares (Lepus americanus). First, we injected 11 hares with radioactive cortisol and collected all voided urine and feces for 4 days. Radioactive metabolites were recovered predominantly in the urine (59%), with only 8% recovered in the feces. Peak radioactivity was detected an average of 3.5 and 5.7 h after injection in the urine and feces, respectively. Second, we investigated diurnal rhythms in fecal cortisol metabolites by measuring recovered radioactivity 2 days after the radioactive cortisol injection. The total amount of radioactivity recovered showed a strong diurnal rhythm, but the amount of radioactivity excreted per gram of feces did not, remaining constant. Third, we injected hares with dexamethasone to suppress fecal cortisol metabolites and 2 days later with adrenocorticotropic hormone to increase fecal cortisol metabolites. Dexamethasone decreased fecal cortisol metabolites concentrations by 61% and adrenocorticotropic hormone increased them by 1,000%, 8–12 h after injection. Fourth, we exposed hares to a simulated predator (dog). This increased the fecal cortisol metabolites concentrations by 175% compared with baseline concentrations 8–12 h after exposure. Thus, this enzyme immunoassay provides a robust foundation for non-invasive field studies of stress in hares.  相似文献   

10.
Three domestic cats were given i.m. injections of 3H-cortisol to determine the time course and relative proportion of excreted 3H-cortisol metabolites into urine and feces. Most urinary radioactivity was detected in the first sample collected at 3.9 ± 2.5 hr postinjection and accounted for 13.9 ± 2.1% of the total radioactivity recovered. High performance liquid chromatography (HPLC) detected four urinary metabolites, one of which (13.7% urinary radioactivity) eluted with the 3H-cortisol reference tracer and was quantifiable using a commercial cortisol radioimmunoassay (RIA). The majority of cortisol metabolites in feces (85.9 ± 2.1%) was excreted at 22.3 ± 6.2 hr. HPLC analysis detected several fecal metabolites consisting primarily of nonhydolyzable water-soluble forms, none of which eluted with 3H-cortisol or 3H-corticosterone reference tracers. No immunoreactivity was detected in HPLC-separated fecal eluates using the cortisol RIA; however, two of the more polar metabolites were quantifiable using a commerical cortisosterone RIA. The physiological relevance of the immunoreactive fecal metabolites was determined in four domestic cats given an adrenocorticotropin (ACTH) challenge. Increased serum cortisol concentrations were detected within 30 min of ACTH injection, which was maintained for at least 6 hr. A corresponding increase in fecal cortisol metabolite concentrations (ranging from 238% to 826% over individual baseline values) was observed 24–48 hr later. These data indicate that adrenocortical activity can be monitored nonivasively in the cat by measuring cortisol metabolites excreted in feces. This procedure is a potentially valuable tool for endangered felid management to help evaluate responses to physiological and psychological stressors associated with environmental conditions and husbandry practices. (This article is a US Government work and, as such, is in the public domain in the United States of America.) © 1996 Wiley-Liss, Inc.  相似文献   

11.
Estradiol-17β metabolism was studied in two female Asian elephants (Elephas maximus). In an initial study, 500 μCi of tritiated estradiol-17β was injected iv into a single animal, and 0, 30 and 60 min serum samples were collected as well as all excreted urine and feces for 24 hr. In a second study, 1.5 mg unlabeled estradiol-17β was injected iv into a second animal and 0, 5, 15, 30, and 60 min serum samples and a 30 min urine sample were collected postinjection. Analyses of samples from both studies demonstrated a rapid conversion of free estradiol to conjugated forms in the serum. The first (5 min) serum sample following the injection of unlabelled estradiol contained unconjugated estradiol: conjugated estradiol: conjugated estrone at a ratio of 60: 29: 10, respectively, and at 30 min a ratio of 33: 43: 24. The urinary estrogen metabolites were in the conjugated form with an estradiol: estrone ratio of 60: 40. No radiolabeled estrogen was found in the fecal samples during the 24 hr following administration of the radiolabeled estradiol. These data indicate a rapid clearance of circulating free estradiol in the elephant, with a major metabolite in the serum and urine being estradiol conjugate. © 1992 Wiley-Liss, Inc.  相似文献   

12.
The pattern of eicosanoid metabolites appearing in urine and feces following oral administration of radioactive arachidonic acid was investigated using rats deficient in essential fatty acids. About 70-80% of the radioactivity in the urine during the first day after feeding was adsorbed to XAD-2 resin and represented eicosanoid metabolites, whereas the rest of the radioactivity was mainly 3H2O. The eicosanoid metabolites were fractionated into different polarity classes using reverse phase Sep-Pak C18 cartridges. Gas chromatographic analysis of the urinary metabolites following their derivatization into methyl ester-methoxime-tert-butyl-dimethylsilyl ethers revealed that nearly one-half of the metabolites had ECL values less than 22 and represented metabolites more oxidized than commonly described. Only 30% of the metabolites had ECL values between 26 to 32, corresponding to the values for the metabolites that originate from exogenously infused prostaglandins. A large portion of the eicosanoid metabolites was also excreted with the feces. The isotopic patterns from the reverse phase chromatography indicated that many of the fecal metabolites may be similar to those in urine although some metabolites in feces were not present in urine. Based on the specific radioactivity of the administered arachidonic acid, it appeared that at least 6 to 8 mg of eicosanoid metabolites were excreted through urine and feces within 24 hrs following an oral bolus of 60 mg arachidonic acid. The rapid increase and subsequent decrease in eicosanoid metabolite excretion after oral administration of arachidonate indicates that the dietary intake of polyunsaturated fatty acids may have a more rapid effect upon the endogenous production of eicosanoids than is generally recognized.  相似文献   

13.
The pattern of eicosanoid metabolites appearing in urine and feces following oral administration of radioactive arachidonic acid was investigated using rats deficient in essential fatty acids. About 70–80% of the radioactivity in the urine during the first day after feeding was adsorbed to XAD-2 resin and he represented eicosanoid metabolites, whereas the rest of the radioactivity was mainly 3H2O. The eicosanoid metabolites were fractioned into different polarity classes using reverse phase Sep-Pak C18 cartridges. Gas chromatographic analysis of the urinary metabolites following their derivatization into methyl ester-methoxime- -butyl-dimethylsilyl ethers revealed that nearly one-half of the metabolites had ECL values less than 22 and represented metabolites more oxidized than commonly described. Only 30% of the metabolites had ECL values between 26 to 32, corresponding to the values for the metabolites that originate from exogenously infused prostaglandins. A large portion of the eicosanoid metabolites was also excreted with the feces. The isotropic patterns from the reverse phase chromatography indicated that many of the fecal metabolites may be similar to those in urine although some metabolites in feces were not present in urine. Based on the specific radioactivity of the administered arachidonic acid, it appeared that at least 6 to 8 mg of eicosanoid metabolites were excreted through urine and feces within 24 hrs following an oral bolus of 60 mg arachidonic acid. The rapid increase and subsequent decrease in eicosanoid metabolite excretion after oral administration of arachidonate indicates that the dietary intake of polyunsaturated fatty acids may have a more rapid effect upon the endogenous production of eicosanoids than is generally recognized.  相似文献   

14.
Endemic chinchilla (Chinchilla spp.) populations are nearly extinct in the wild (South America). In captive animals (Chinchilla lanigera and C. brevicaudata), reproduction is characterized by poor fertility and limited by seasonal breeding patterns. Techniques applied for studying male reproductive physiology in these species are often invasive and stressful (i.e. repeated blood sampling for sexual steroids analysis). To evaluate endocrine testicular function, the present experiments were designed to (a) determine the main route of testosterone excretion (14C-testosterone infusion in four males); (b) validate urine and fecal testosterone metabolite measurements (HPLC was used to separate metabolites and immunoreactivity was assessed in all metabolites using a commercial testosterone radioimmunoassay, and parallelism, accuracy and precision tests were conducted to validate the immunoassay); and (c) investigate the biological relevance of the techniques applied (quantification of testosterone metabolite excretion into urine and feces from five males injected with hCG and comparison between 10 males and 10 females). Radiolabelled metabolites of 14C-testosterone were excreted, 84.7+/-4.2 % in urine and 15.2+/-3.9 % in feces. A total of 82.7+/-4.2% of urinary and 45.7+/-13.6% of fecal radioactivity was excreted over the first 24 h period post-infusion (metabolite concentration peaked at 8.2+/-2.5 h and 22.0+/-7.0 h, respectively). Several urinary and fecal androgen metabolites were separated by HPLC but only fecal metabolites were associated with native testosterone; however, there was immunoreactivity in more than one metabolite derived from 14C-testosterone. After hCG administration, an increase in androgen metabolite excretion was observed (p<0.05). Males excreted greater amounts daily of urinary androgen metabolites as compared with females (p<0.05); this difference was not evident in feces. Results of the present study indicate that the procedure used is a reliable and non-invasive method to repeatedly monitor variations in testicular endocrine activity in this species. It can be a useful tool that would help ensure the survival of the wild populations as well as to provide the basis for a more efficient use by the fur industry.  相似文献   

15.
[99Mo]di-, tri-, and tetrathiomolybdate (5.4 to 62.5 mg of Mo) were given by intravenous injection to sheep maintained on a sulfur-supplemented (3 g of S/kg) diet. All the compounds were metabolized very rapidly over the first 15 min postinjection, but relatively slowly thereafter, with a t1/2 of about 30 hr for dithiomolybdate and 40 h for tri- and tetrathiomolybdate. The [99Mo] metabolites present in plasma were identified by Sephadex G-25 chromatography. The main fate of the compounds injected appeared to be stepwise transformation to molybdate and subsequent rapid urinary elimination. Over 90-100 hr more than 90% of the radioactivity was excreted in urine, compared to less than 5% in the feces. The trichloroacetic acid (TCA) solubility of plasma copper and the diamine oxidase activity of ceruloplasmin was depressed, particularly over the first 15 min postinjection and a more persistant TCA-insoluble Cu fraction was apparent.  相似文献   

16.
14C-Labelled oestradiol-17 beta and progesterone (50 mu Ci each) were injected i.v. into an adult female white rhinoceros and all urine and faeces collected separately over the next 4 days. The total recovery of injected label was 61%, 25% being present in the urine and 36% in the faeces. Of the radioactivity recovered, 69% was excreted on Day 2 of the collection period. Repeated extraction of samples obtained on Day 2 showed that, of the radioactivity in faeces, 92.4% was associated with unconjugated steroids whereas in the urine the proportion of conjugated and unconjugated steroids were similar (41.2% and 51.4% respectively). After phenolic separation of urinary steroids, HPLC followed by derivatization and recrystallization techniques identified progesterone as the major component of the unconjugated portion with 4-pregnen-20 alpha-ol-3-one as the principal metabolite in the conjugated fraction. Pregnanediol was not present. Oestrone appeared to be the most abundant oestrogen metabolite with smaller but significant amounts of oestradiol-17 beta and oestradiol-17 alpha in the unconjugated and conjugated fractions respectively. Small amounts of progesterone were found in the faecal extract in which the radioactivity consisted mainly of oestradiol-17 alpha and oestradiol-17 beta. The results have established the major excreted metabolites of oestradiol-17 beta and progesterone in the white rhinoceros and the development of more appropriate assay methods for monitoring ovarian function in African rhinoceroses should now be possible.  相似文献   

17.
The metabolic fate of chlormadinone acetate (17alpha-acetoxy-6-chloro-4, 6-pregnadiene-3, 20-dione; CAP) was studied in intact and biliary fistula baboons. The steroid was labeled with 3H at position 1 and with 14C at the carboxyl moiety of the 17alpha-acetate, thus affording the opportunity to ascertain the loss of the 17alpha-acetoxy group and the fate of both labels. The averages of the radioactivity excreted, given as percentages of the amounts injected, and the standard deviations were as follows: In the urine of intact animals after 6 hours, 5.7 +/- 0.2% and 5.5 +/- 0.7% of the 3H and 14C were recovered, respectively. After 6 days, there was 17.5% of the 3H and 16.2% of the 14C in the urine plus 15.3% of the 3H and 16.4% of the 14C in the feces. In baboons with biliary fistulas, the total radioactivity excreted was 7.8 +/- 0.7% of the 3H and 11.6% of the 14C in the urine, and 30.9 +/- 4.4% of the 3H and 30.7% of the 14C in the bile after 6 hours. Glucosiduronates were the predominant conjugates in the urine and bile. The similarity in the urinary excretion of radioactivity in the first 6 hours in intact and biliary fistula animals, the relatively low excretion of radioactivity in the bile and after 6 days in the urine, and the low fecal excretion suggest that the metabolites of CAP are not involved in an extensive enterohepatic circulation in the baboon. Deacetylation of the 17alpha-acetate in CAP was detected in the early collection periods of the urine and bile and constituted a very small percentage of the injected compound. No significant oxygenation of CAP at position 1 was detected. The metabolism of CAP is discussed and compared to our previously reported data on the metabolism of progesterone, ethynodiol diacetate and medroxyprogesterone acetate and the data on other progestogens reported in the literature. It appears that the excretion of CAP is significantly slower in the baboon than that of the other progestogens. The amounts of glucosiduronates of CAP and/or its metabolites formed in vivo are less than those formed with the other progestogens. Also, the extent of deacetylation of the 17alpha-acetate of CAP is much less than that of the 3beta-acetate of ethynodiol diacetate.  相似文献   

18.
The metabolism of 3beta-hydroxy-5alpha-pregnan-20-one sulphate was studied in bile fistula rats and in isolated perfused livers. Computerized gas chromatography--mass spectrometry, in combination with specific deuterium-labelling, was employed to follow the metabolic transformations. Male animals excreted metabolites into bile more rapidly than females, a finding which could be correlated with the preferential formation of glucuronide conjugates in the male liver. The major metabolic pathway in male rats involved the steps: hydrolysis, 2alpha-hydroxylation, oxidoreduction at C-3 and glucuronide conjugation, yielding 2alpha, 3alpha-dihydroxy-5alpha-pregnan-20-one glucuronide as the major metabolite. Only traces of the injected steroid sulphate were detected in bile from male animals. In contrast, the administered compound was the major steroid excreted in bile of female rats, where the main metabolite was identified as 3beta,15beta-dihydroxy-5alpha-pregnan-20-one sulphate. A minor metabolite, 3beta,16alpha-dihydroxy-5alpha-pregnan-20-one, was found as a monosulphate in female rats and as both a disulphate and a glucuronide conjugate in male rats. The deuterium content of the sulphated 15beta-and 16alpha-hydroxylated metabolites was consistent with metabolic pathways involving direct hydroxylation of the injected steroid sulphate. The results obtained from the liver perfusions were essentially the same as those from the experiments with bile fistula animals. This indicates that all the observed metabolic reactions took place in the liver.  相似文献   

19.
Following the oral administration of 14C-bumetanide to four male volunteers, approximately 81% of the dose was excreted in the urine within 48 hrs. The remaining 14C was found in the feces and had entered the intestine via the bile. Benzene extraction of urine at pH 3.2 quantitatively extracted bumetanide from its metabolites and indicated that 63.5% of urinary 14C was unchanged bumetanide. Metabolites identified to data indicate metabolism occurring on the butyl side chain, with the primary alcohol being the major metabolite. Conjugates of these metabolites and of bometanide were also found in the urine. Only conjugates of bumetanide and its metabolites were found in the bile.  相似文献   

20.
This study tested the hypothesis that steroid hormone metabolites can be measured in anuran feces and their concentrations used to identify the sex of adults. Fecal samples from American toads, Bufo americanus, and boreal toads, B. boreas boreas, were extracted using ethyl acetate, and the concentrations of estradiol, progesterone and testosterone metabolites were measured by enzyme immunoassays with antibodies commonly used to evaluate steroid hormone concentrations in mammalian species. In American toads, mean testosterone metabolite concentrations (P<0.05) between males (224.3±15.5 ng/g feces) and females (80.7±10.6 ng/g), but estradiol and progesterone metabolite concentrations did not. In contrast, estradiol immunoreactivity differed (P<0.05) between male (19.0±1.8 ng/g) and female (48.3±6.3 ng/g) boreal toads. Progesterone and testosterone metabolite concentrations did not differ. Fecal hormone metabolite analysis offers a promising noninvasive approach to gender identification in anuran amphibians. However, the group of metabolites differentiating gender may not be consistent among species. Zoo Biol 0:1–12, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号