首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

2.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

3.
Cultures of the temperate estuarine diatom, Phaeodactylum tricornutum Bohlin (NEPCC Clone 31), were grown under ambient intensities of ultraviolet-A radiation (UVAR), photosynthetically active radiation (PAR), and various intensities of ultraviolet-B radiation (UVBR; 290–320 nm). Growth rates and cell volumes were monitored for 36 d. UVBR decreased growth rates and increased cell volumes. Sensitivity of growth to UVBR increased with time. Growth rates of P. tricornutum decreased with increasing ratios of UVBR:UVAR + PAR.  相似文献   

4.
Cultures of the marine diatom Phaeodactylum tricornutum Bohlin incorporated, a large proportion of the total fixed carbon (50% or more) into amino acids and amides during short periods of photo-assimilation of 14C-labelled carbon dioxide. Although increasing nitrogen limitation in a nitrate-limited chemostat had little significant effect on the proportion of C incorporated into amino acids and amides combined, it did affect the distribution of radioactivity within individual compounds of this group. In particular, increasing degrees of N deficiency reduced the proportion incorporated into amides to almost undetectable levels, reduced the proportion in alanine and increased the proportion in glutamic acid. Also, increasing N limitation decreased the relative synthesis of sugar phosphates and increased the proportion of C assimilated into intermediates of the tricarboxylic acid cycle. Reduced light intensity did not have any significant effect on the proportion of C incorporated into the total amino acids and amides, but did cause a decrease in the radioactivity  相似文献   

5.
为研究昼夜温差对三角褐指藻和赤潮异弯藻生长的影响,研究设置3个温度水平[培养温度为22℃、18℃和22—18℃(光-暗周期),分别记为22℃处理组、18℃处理组和22—18℃处理组]对2种藻进行分批和半连续培养.结果表明:(1)在3个温度处理下,分批培养时,和18℃相比,22—18℃降低了三角褐指藻在平台期的细胞密度,...  相似文献   

6.
Cryptomonas erosa Skuja, a planktonic alga, was grown in batch culture at different combinations of light intensity and temperature, under nutrient saturation. Growth was maximal (1.2 divisions · day?1) at 23.5 C and 0.043 ly · min?1, declining sharply with temperature (0.025 divisions-day?1 at 1 C). With decreasing temperature, the cells showed both light saturation and inhibition at much reduced light intensities. At the same time the compensation light intensity for growth declined towards a minimum of slightly above 0.4 × 10?4 ly · min?1 (~1 ft-c) at 1 C or <0.1 ly · day?1 (PAR). Cell division was more adversely affected by low temperature than carbon uptake, and the resulting excess production of photosynthate was both stored and excreted. Extreme storage of carbohydrates resulted in cell volumes and carbon content ca. 22 and 30 × greater, respectively, than the maxima observed for cells incubated in the dark, whereas, at growth inhibitory light levels, as much as 57% of the total assimilated carbon was excreted. A marked increase in cell pigment was observed at the lowest light levels (<10?3 ly · min?1), at high temperature. The growth response of C. erosa in culture provides insight into the abundance and distribution of cryptomonads and other small algal flagellates in nature.  相似文献   

7.
Cultures of Isochrysis galbana Parks and Phaeodactylum tricornutum Bohlin were grown in iron-limited chemostats. With increasing iron deficiency, photosynthetic rate per cell and assimilation number decreased. The pattern of photosynthesis was also altered; in Fe deficient cells the proportion of 14C fixed in glycine and serine decreased with an accompanying increase into alanine after 3 min assimilation. Although there was no significant effect of Fe deficiency on the proportion of 14C incorporated into total amino acids and amides, the percentage of total 14C fixed in protein increased with increasing Fe deficiency. Cellular levels of chlorophyll a, carotenoids, cytochromes and protein also decreased with increasing Fe deficiency. However, the reduction in chlorophyll a/cell was not as great as that of cytochrorne f1 and Fe deficient cells therefore showed a marked increase in chlorophyll a:cytochrorne f1 ratio.  相似文献   

8.
The composition of fatty acids and contents of eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAs) of the economically important marine diatom, Phaeodactylum tricornutum (Bohlin), were investigated to see whether reducing the culture temperature enhances the production of EPA and PUFAs. The contents of EPA and PUFAs of P. tricornutum were found to be higher at lower temperature when cultured at 10, 15, 20, or 25°C. When the cells grown at 25°C were shifted to 20, 15, or 10°C, the contents per dry mass of PUFAs and EPA increased to the maximal values in 48, 24, and 12 h, respectively. The highest yields of PUFAs and EPA per unit dry mass (per unit volume of culture) were 4.9% and 2.6% (12.4 and 6.6 mg·L?1), respectively, when temperature was shifted from 25 to 10°C for 12 h, both being raised by 120% compared with the control. The representative fatty acids in the total fatty acids, when temperature was lowered from 25 to 10°C, decreased proportionally by about 30% in C16:0 and 20% in C16:1(n?7) but increased about 85% in EPA. It was concluded that lowering culture temperature of P. tricornutum could significantly raise the yields of EPA and PUFAs.  相似文献   

9.
Oxygen inhibited the rate of light-saturated photosynthesis of the marine diatom Phaeodactylum tricornutum Bohlin. However, inhibition could only be detected with O2 concentrations approaching 100%. Atmospheric concentrations of O2 (21%) had little effect on photosynthesis. In this, Phaeodactylum more closely resembles the so-called C-4 plants which show low rates of photorespiration. The results presented here agree with others in showing increased O2 inhibition at reduced bicarbonate concentrations. The biochemical mechanism of photorespiration in Phaeodactylum appears to be similar to that reported for other photosynthetic systems. The activity of ribulose-1,5 diphosphate (RuDP) carboxylase in cell-free extracts was also inhibited, by oxygen. Inhibition by O2 was optimal at pH 9.2 as was the RuDP-dependent O2 uptake. RuDP carboxylase/oxygenase ratios decreased with increasing pH and were greater in cells grown at lower light intensities. Carboxylase levels were less affected by the light intensity for growth than were the levels of the oxygenase. Short-term incorporation of NaHCO3-14C by cells grown at high light intensities showed increased labelling of glycolate and glycine plus serine under O2 compared with nitrogen. There was a concomitant decrease in the radioactivity found in phosphoglyeric acid (PGA) and sugar phosphates in the presence of O2. The effects of O2 on the short-term pattern of photosynthesis were less marked when the alga was previously grown at low light intensities.  相似文献   

10.
Two morphotypes, fusiform and oval, were isolated from a single clone of the diatom Phaeodactylum tricornutum Bohlin and maintained as subclones by culturing in liquid and solid substrates, respectively. Salinity of the medium, from brackish to marine, had no effect on expression of the phenotypes. The oval cell is generated endogenously within a “transformed”fusiform cell upon transfer from liquid medium to agar plates. With the light microscope, normal and “transformed”fusiform cells, prior to giving rise to oval cells, can be discriminated by means of their staining response to toluidine blue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of protein extracts from lysed cells revealed slight differences in polypeptide composition between fusiform and oval types. A phenotype-restoration experiment from oval to fusiform demonstrated that the oval type readily reestablished not only fusiform morphology but also the protein pattern characteristic for the fusiform type. Immunochemical analyses (western blots) using antisera raised against whole and lysed cells of both morphotypes revealed antigenic alterations of the oval morphotype. Several antigenic determinants restricted mainly to the surface of oval cells were detected. Results indicate that environmentally induced phenotypes of Phaeodactylum may be not only the consequence of specific gene expression but also the result of significant, general post-translational modifications.  相似文献   

11.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   

12.
The consumption of inorganic macronutrients (NO3?+ NO2?, NH4+, and PO4?3) and the composition of intra- and extracellular dissolved free amino acid pools (IDFAA and EDFAA, respectively) were determined in continuous-reservoir batch dialysis cultures of the marine diatom Phaeodactylum tricornutum Bohlin maintained on unenriched natural seawater as a growth medium. Nutrient diffusion (Nd), which equals the nutrient uptake of the culture, increased with the cell density and the age of the culture. A concentration of 6.77 × 107 cells · mL?1 was obtained in stationary phase, which coincided with the NO3?+ NO2? diffusion limit (Ndmax) of the dialysis apparatus. The Ndmax for NH4+ occurred much earlier, at the end of exponential growth, whereas Ndmax for PO4?3 was not attained during the growth cycle of the culture, even in early stationary phase. A significant depletion (77%) of the IDFAA pool during exponential phase was followed by a reestablishment–to approximately 60% of the initial level–of internal pools during linear and stationary growth phases. This recovery occurred during the illuminated portion of the photoperiod (12:12 h LD) and involved principally the amino acids GLN, GLU, β-GLU, and ASN. The recovery of GLN and ASN levels was particularly significant, because the intracellular concentrations of these amino acids were higher at the end of the growth cycle than before. The EDFAA pool was generally dominated by the amino acids SER and GLY+THR; however, during active growth, ORN and LYS often constituted an important fraction. The EDFAA concentration increased until linear growth phase was reached, during which a higher concentration of total free amino acids was attained in darkness than under illumination. The EDFAA component diminished afterward, and in stationary phase this fraction returned to concentrations equivalent to those observed at the beginning of the growth cycle. The variations in EDFAA concentrations were expressed by a pronounced decrease in the cellular excretion of amino acids with increasing cell density. These cellular responses of Phaeodactylum tricornutum in dense culture, specifically the regulation of amino acid excretion and intracellular pool size, may affect the N-conversion coefficient (YN). Consequently, by prolonging the linear phase of growth and reducing the concentration of autoinhibitory metabolites by diffusion, a markedly enhanced final cell density can be achieved in cultures grown on natural unenriched seawater.  相似文献   

13.
Achnanthes longipes Ag. is a marine stalk‐forming diatom that grows in dense biofilms. The effects of cell density, temperature, and light on growth and stalk production were examined in the laboratory to determine how they affected the ability of this diatom to form a biofilm. Stalk production abruptly increased when A. longipes was cultured at a density of 5.4 × 103 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
, with a lag before stalk production occurring in cultures initiated at lower densities. Growth occurred at all temperatures from 8 to 32° C, with maximum growth at 26° C. Growth rate was light saturated at 60 μmol photons·m ? 2·s ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
. Stalk production was determined as the proportion of cells producing stalks and stalk length in response to various temperatures and light intensities at high (5000 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
) and low (500 cells·mL ? 1 1 Received 23 February 2002. Accepted 22 July 2002.
) densities. More cells formed stalks at high density, with no difference in stalk length. The proportion of cells producing stalks was maximal at 20° C, with little change at 17–32° C. Stalk length was at a maximum between 14 and 26° C. Stalk production showed little change in response to varying light intensity. The results of an earlier investigation on the effects of bromide concentration on stalk formation were expressed as the proportion of cells forming stalks and the lengths of the stalks. Both measures of stalk production varied with bromide concentration, with maximum values at 30 mM bromide. The increased stalk production at higher densities may be a means of elevating cells above the substrate to avoid competition in the dense biofilm.  相似文献   

14.
Fatty acid variation among culture collection strains and 40 new isolates of Isochrysis galbana Parke was analyzed by quantitative genetic methods. Fatty acid variation among strains and among isolates was highly significant for major fatty acids showing the existence of a genetic component in the determination of differences in fatty acid content. The heritabilities for the major fatty acids ranged between 0.68 and 0.99 among collection strains and between 0.31 and 0.43 among isolates. Eicosapentaenoic acid (EPA) had the highest heritability in I. galbana, but the majority of remaining fatty acids also showed high heritability values. A similar experiment with five UTEX strains of Phaeodactylum tricornutum also showed the presence of a genetic component in four out of seven major fatty acids. Nevertheless, the UTEX strains did not differ significantly in EPA content, although they showed a heritability of 0.40 for this fatty acid. An additional experiment culturing the same isolates of I. galbana in larger volumes of media showed that there was a high significant positive linear relation between EPA content in different volumes. Therefore, EPA content in small volume cultures was an unbiased indicator of EPA content in larger volume cultures. Our results provide support for the genetic determination of fatty acid content in microalgae and suggest that selection, and mutation and selection, are likely to improve EPA content in I. galbana and probably in many other microalgae. Such a selection program can be carried out in small-volume cultures with high confidence.  相似文献   

15.
Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3?-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4?-uptake were much higher than NO3?-uptake at all light-temperature combinations. Below 20 C, PO4?3-uptake was more rapid in dark than in light, but was light enhanced at 26 C.  相似文献   

16.
Oligomycin is an inhibitor of the mitochondrial ATP synthase. In nitrogen-replete cells of the marine diatom Phaeodactylum tricornutum Bohlin, the rate of dark respiration was high and markedly inhibited (62%–74%) in the presence of oligomycin. In contrast, the rate of dark respiration in nitrogen-deprived cells was about half that in nitrogen-replete cells but was only slightly inhibited (16%–30%) by oligomycin. Consistent with these effects on rates of dark respiration, oligomycin decreased the ATP level and the ATP:ADP ratio by about 40% in nitrogen-replete cells incubated in darkness but had a negligible effect on the ATP level and ATP:ADP ratio in nitrogen-deprived cells. In sodium and nitrogen-deprived cells, the rate of dark respiration was greater than that in nitrogen-replete cells, but there was little effect of oligomycin on the rate of dark respiration. In light-limited cells, the rate of dark respiration was similar to that in nitrogen-deprived cells, but the inhibition (57%) in the presence of oligomycin was greater. These results suggest that most of the O2 consumption by nitrogen-replete cells was linked to mitochondrial ATP synthesis and that the rate of mitochondrial ATP synthesis in nitrogen-deprived and sodium and nitrogen-deprived cells was low. The potential implications of these results for our understanding of maintenance respiration are discussed.  相似文献   

17.
以海洋硅藻三角褐指藻为实验材料, 研究了不同氮磷比培养对其光合无机碳利用和碳酸酐酶活性的影响, 结果显示三角褐指藻生长速率在N:P=16:1时最大, 高于或低于16:1时明显下降, 表明其最适生长受到氮磷的限制。氮限制(N:P=4:1或1:1)导致叶绿素a含量分别下降30.1% 和47.6%, 磷限制(N:P=64:1或256:1)下降39.1%和52.4%, 但氮或磷限制对叶绿素c含量并没有明显影响。不同营养水平培养对光饱和光合速率具有明显的影响, 与营养充足培养相比, 在严重氮磷限制(N:P=1:1或256:1)培养下光饱和光合速率分别下降39.7%和48.0%, 光合效率与暗呼吸速率也明显下降。在氮磷限制培养下藻细胞pH补偿点明显下降; K0.5CO2值在磷限制下降低30%, 表明磷限制有助于提高细胞对CO2的亲和力, 但氮限制并没有明显影响。在氮磷限制培养的细胞反应液中Fe (CN)63-浓度下降速率较慢, 表明在氮磷限制环境中生长的细胞质膜氧化还原能力明显低于营养充足条件下生长的细胞。氮磷限制也导致胞内、外碳酸酐酶活性明显下降, 其中在氮限制下胞外碳酸酐酶活性分别下降50%和37.5%, 在磷限制下下降22.3%和42.1%。严重的氮(N:P=1:1)或磷(N:P=256:1)限制导致胞内碳酸酐酶活性下降36.5%和42.9%。研究结果表明, 三角褐指藻细胞在氮磷营养限制的环境中, 可以通过调节叶绿素含量、无机碳的利用方式和碳酸酐酶的活性以维持适度的生长。    相似文献   

18.
Eleven different strains of Phaeodactylum tricornutum Bohlin were obtained from three culture collections and were examined for the presence of external and internal carbonic anhydrase (CA). Cells of all strains, grown in standing culture at alkaline pH and low, dissolved inorganic carbon had internal CA, but only eight were found to have external CA. External CA activity was reduced when cultures were bubbled with air and was completely repressed when they were grown on 5% CO2. Expression of external CA activity appears to be regulated by CO2 concentration in the growth medium, but within one species, there appears to be a variation in occurrence of external CA and consequently in the mode of inorganic carbon acquisition.  相似文献   

19.
The ultrastructure of a chain-forming clone of the polymorphic diatom Phaeodactylum tricornutum Bohlin has been studied by scanning and transmission electron microscopy. Both fusiform and tri-radiate cells are capable of forming chains. The cells, lacking any silica shell, are attached to each other at the central region of the theca, leaving the arms free. Neither homogenization nor sonication completely disrupts the chains. The attachment is due to fusion of the cell wall in the central region of the cell during cell wall deposition. This fusion results from failure of the cytoplasmic cleavage furrow to separate the plasma membranes of the two daughter cells sufficiently so that a single wall is deposited instead of two separate walls. Possible explanations for this are discussed.  相似文献   

20.
实验研究不同剂量(100、500和1000μL)的解淀粉芽孢杆菌菌液、解淀粉芽孢杆菌代谢产物和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)及代谢产物混合液3种组合对三角褐指藻(Phaeodactylum tricornutum)生长的影响.结果表明,解淀粉芽孢杆菌、其代谢产物和两种的混合液对三...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号