首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study (1) analyzed fetal development of mouse embryos after oocyte cryopreservation in CJ2, a choline-based medium, (2) examined the effect of culture duration in vitro on subsequent fetal development, and (3) compared survival and fetal development of zygotes frozen in embryo transfer freeze medium (ETFM; sodium-based medium) or CJ2. Unfertilized oocytes and zygotes were cryopreserved using a slow-cooling protocol. After thawing, oocytes were inseminated after drilling a hole in their zona, cultured in vitro either to the two-cell or blastocyst stage, and transferred to the oviducts or uterine horns of recipient mice. In parallel experiments, frozen-thawed zygotes were similarly cultured and transferred. Implantation rates for transferred embryos were high (range 66-88%), regardless of whether they had been frozen as oocytes or zygotes and whether they had been transferred to the oviduct or uterus. However, fetal development was significantly higher when two-cell embryos were transferred. With blastocyst transfer, control embryos implanted and produced a greater proportion of fetuses than did oocytes frozen in CJ2, whereas transfer at the two-cell stage resulted in similar proportions of implantation sites and fetuses. Blastocyst transfer of zygotes cryopreserved in ETFM or CJ2 produced similar fetal development rates (23.6% vs 20.0%), but when frozen-thawed zygotes were transferred at the two-cell stage the fetal development rates were higher in the ETFM group (53.3%) than in the CJ2 group (32.0%). A high proportion (46.7%) of oocytes frozen in CJ2 in a nonprogrammable freezer and plunged at -20 degrees C developed into live offspring. This study shows that in the mouse (1) oocytes frozen in CJ2 can develop into viable fetuses, (2) prolonging culture in vitro has a detrimental effect on embryo transfer outcome, and (3) CJ2 offers no advantage for zygote cryopreservation.  相似文献   

2.
Voelkel SA  Hu YX 《Theriogenology》1992,37(5):1117-1131
The effect of two concentrations of oxygen on the development of bovine embryos was compared using two separate co-culture systems. In Experiment I, bovine oocytes were matured and fertilized in vitro and were then co-cultured for 7 days in 20 mul drops of M199 with 10% fetal calf serum containing oviduct cells. When cultures were performed in an atmosphere of 5% CO(2) in air (20% O(2)) or in a mixture of 5% CO(2), 5% O(2) and 90% N(2) (5% O(2)), 22 of 179 (12%) and 56 of 179 (31%) zygotes developed to or beyond the late morula stage (P<0.0001), respectively. After freezing, thawing and 48 hours of additional culture, 2 of 21 (10%) and 18 of 53 (34%) embryos were judged viable (P<0.001) within the respective treatment groups. In Experiment II, zygotes produced by the same means were co-cultured in 0.5 ml of M199 containing 10% fetal calf serum with monolayers of buffalo rat liver (BRL) cells. In 20% O(2), 51 of 177 (29%) zygotes developed into viable embryos, while in 5% O(2) only 9 of 177 (5%) were judged viable after 7 days of culture (P<0.0001). Post-freezing survival rates were 53% and 67% for embryos from the two respective oxygen concentration treatment groups. The transfer of 20 Grade 1 frozen/thawed embryos produced by co-culture with BRL cells produced six pregnancies (30%). These experiments show that the critical effect of oxygen concentration on embryo development in vitro and the ability of embryos produced by in vitro procedures to survive freezing can be influenced by the type of culture system employed.  相似文献   

3.
The aim of this study is to examine the effect of bovine oocyte maturation, fertilization or culture in vivo or in vitro on the proportion of oocytes reaching the blastocyst stage, and on blastocyst quality as measured by survival following vitrification. In Experiment 1, 4 groups of oocytes were used: (1) immature oocytes from 2-6 mm follicles; (2) immature oocytes from > 6 mm follicles; (3) immature oocytes recovered in vivo just before the LH surge; and (4) in vivo matured oocytes. Significantly more blastocysts developed from oocytes matured in vivo than those recovered just before the LH surge or than oocytes from 2-6 mm follicles. Results from > 6 mm follicles were intermediate. All blastocysts had low survival following vitrification. In Experiment 2, in vivo matured oocytes were either (1) fertilized in vitro or (2) fertilized in vivo by artificial insemination and the resulting presumptive zygotes recovered on day 1. Both groups were then cultured in vitro. In vivo fertilized oocytes had a significantly higher blastocyst yield than those fertilized in vitro. Blastocyst quality was similar between the groups. Both groups had low survival following vitrification. In Experiment 3a, presumptive zygotes produced by in vitro maturation (IVM)/fertilization (IVF) were cultured either in vitro in synthetic oviduct fluid, or in vivo in the ewe oviduct. In Experiment 3b, in vivo matured/in vivo fertilized zygotes were either surgically recovered on day 1 and cultured in vitro in synthetic oviduct fluid, or were nonsurgically recovered on day 7. There was no difference in blastocyst yields between groups of zygotes originating from the same source (in vivo or in vitro fertilization) irrespective of whether culture took place in vivo or in vitro. However, there was a dramatic effect on blastocyst quality with those blastocysts produced following in vivo culture surviving vitrification at significantly higher rates than their in vitro cultured counterparts. Collectively, these results indicate that the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the conditions of embryo culture have a crucial role in determining blastocyst quality.  相似文献   

4.
A study was designed to evaluate and compare the appearance of embryos recovered from donor cows on Day 6 to embryos from in vivo fertilized cow zygotes developed to Day 6 on uterine tube (oviduct) epithelial cell co-culture using serum-free CZB medium. Embryo stage of development and quality score were assessed. Hoechst 33342 DNA stain was then used to determine the total number of blastomeres, the number of poor nuclei and the number of nuclei in mitosis. Mean cell counts did not differ for the 70 embryos evaluated in each group (65 cells in vivo, 61 cells in vitro). The percentage of transferable emryos (excellent, good or fair quality), in each group also did not differ (57% in vivo, 56% in vitro). There were no significant differences in any of the measured parameters. Our findings suggest that co-culture of in vivo produced cow zygotes can result in embryos comparable in developmental stage and quality to embryos developed in vivo in the cow for 6 d.  相似文献   

5.
Oocytes from superovulated Chinese hamsters can be fertilized in vitro using the culture medium BWW (70% of 112 ova) or a modified BWW designated as MBWW (76% of 122 ova) when either medium is supplemented with 4 mg/ml of bovine serum albumin. Ova fertilized in vitro will also cleave to the 2-cell stage in either medium (52% in BWW, 87% in MBWW), but fail to develop any further in culture. Oocytes fertilized in vivo and recovered at the late 2-cell or early 4-cell stages from females on Day 3 of pregnancy have the capacity to develop into expanded blastocysts in MBWW. When early embryos that developed into morulae and early blastocyts in culture were transferred to surrogate females, eight normal young were born.  相似文献   

6.
Differentiation of isolated wheat zygotes into embryos and normal plants   总被引:19,自引:0,他引:19  
Efficient and reproducible embryo development has been obtained from fertilized wheat (Triticum aestivum L.) egg cells isolated 3–6 h after hand-pollination of emasculated spikes. It is possible to routinely isolate viable zygotes from about 75% of the excised ovaries from cultivars of both winter and spring types. Co-culture with barley microspores which had been stimulated to sporophytic development resulted in embryonic development of the cultivated wheat zygotes. Within 23 h of pollination; the zygotes underwent their first cell division. They proceeded to develop into club-shaped embryos, most of which turned subsequently to dorsiventral differentiation. The morphological patterns of in-vitro-grown embryos were in accordance with those of normal zygotic embryos growing in planta. The formation of twin or multiple embryos originating from a single zygote was dependent on genotype and exogeneously supplied auxin. Upon transfer onto a suitable solidified medium, zygote-derived embryos usually germinated and developed into plants. After optimizing the feeder system, the nutrient medium and the concentration of 2,4-dichloro phenoxyacetic acid (2,4-D), more than 80 and 90% of the zygotes eventually developed into plants in genotypes Florida and Veery #5, respectively. All regenerated plants were morphologically normal and fertile. The in-vitro development from isolated zygotes of a higher-plant species into typically patterned zygotic embryos is shown here for the first time. Since the entire process, including early zygotic development, is now freely accessible to observation and micromanipulation, the method presented opens up new approaches in fundamental as well as applied fields of reproductive biology. Received: 4 September 1997 / Accepted: 28 November 1997  相似文献   

7.
The survival after transfer of frozen-thawed mouse blastocysts obtained from culture of in-vitro fertilized oocytes or 1- and 2-cell ova was compared. About 10% of transferred embryos developed to term in each group and there was no difference between embryos fertilized in vitro or in vivo. In addition to embryonic loss due to transfer, in-vitro cultivation and freezing reduced the proportion of fetuses considered viable at Day 15 of pregnancy (29.8 versus 50.7% and 26.3 versus 50.7% respectively). When used together these procedures had an additive effect on fetal wastage (18.4 versus 50.7%). In-vitro culture also entailed a significant increase of resorbing implantation sites (10.2 versus 4.3%). The re-expansion rate after freezing and thawing of blastocysts grown in vitro was paradoxically greater than that of blastocysts grown in vivo (85.8 versus 54.6%).  相似文献   

8.
I Kola  C Kirby  J Shaw  A Davey  A Trounson 《Teratology》1988,38(5):467-474
Vitrification of mouse oocytes adversely affected the subsequent developmental potential of embryos and fetuses derived from the fertilization of such oocytes after thawing. Only 5% of oocytes vitrified formed viable fetuses on the 15th day of gestation as compared to 47% in the controls. The incidence of chromosomally aneuploid zygotes, derived from cryopreserved oocytes, was approximately threefold higher than the controls irrespective of whether the oocytes were cryopreserved by vitrification or DMSO slow-freezing. Malformed fetuses were obtained from oocytes that had been vitrified as well as those that had been exposed to vitrification solutions only, whereas no malformed fetuses were obtained in oocytes slow-frozen by DMSO or fresh controls--thus demonstrating that the exposure of oocytes to the vitrification chemicals was responsible for the fetal malformations. The data in this study suggest that the vitrification technique should be cautiously applied to human oocyte cryopreservation. Furthermore, the data also demonstrate that the exposure of female gametes to carcinogenic and/or teratogenic chemicals may result in malformed embryos when such oocytes are subsequently fertilized.  相似文献   

9.
The objective of this study was to evaluate the in vitro and in vivo developmental competence of parthenogenetic (parthenote) pig embryos derived from ovulated and in vitro matured (IVM) oocytes. A total of four experiments were carried out. These demonstrated that the mean blastocyst rates from stimulated ovulated and IVM pig oocytes were not significantly different (61% vs. 46%, p > 0.05) following in vitro culture. Both ovulated and IVM pig parthenotes were able to develop in vivo for 30 days. Parthenote fetuses collected 21 and 30 days post estrus were morphologically normal but significantly smaller and lighter than fertilized controls (p < 0.01). IVM pig parthenotes stopped development around 31 days post estrus.  相似文献   

10.
The normality of in vitro matured oocytes was compared to that of in vivo matured (ovulated) oocytes at the following stages of development: germinal-vesicle breakdown, first polar body formation, fertilization (two polar bodies and two pronuclei with a sperm tail or first cleavage), and fetal development (day 20 fetuses). At all points, the in vitro oocytes exhibited a reduced ability, with oocytes matured cumulus-free having the poorest. The exposure of oocytes to human chorionic gonadotropin (hCG) for 2 hr before collection or during incubation improved their rates of maturation and development to day 20 fetuses but not their ability to undergo fertilization. While beneficial, the exposure to gonadotropins before or during maturation was not essential, as evidenced by the production of two day 20 fetuses matured and fertilized in vitro without any gonadotropin (luteinizing hormone or hCG) treatment in vivo or in vitro. These data demonstrate that in the population of in vitro matured oocytes there exist individuals wholly competent of complete normal development, albeit in a reduced proportion in comparison to normally matured and ovulated oocytes. That the in vitro handling, treatment, and culture of the oocytes may be responsible for some of the reduced developmental ability observed is suggested by the developmental abilities of ovulated oocytes under different conditions. Ovulated oocytes fertilized in the donor had the highest rates of development (46%), followed by those fertilized after transfer into mated recipients' oviducts (20%). The lowest rate was achieved with in vitro fertilized oocytes (7%), which represented the group subject to the greatest degree of manipulation and distinction from the normal in vivo process.  相似文献   

11.
A two-step polymerase chain reaction (PCR) assay was used to determine the sex of mouse preimplantation embryos obtained from oocytes fertilized and cultured in vitro, to investigate the differences in the developmental rates of mouse embryos according to the sex. All the in vitro developed embryos could be analyzed by this method. When the embryos were classified according to the time of morula to blastocyst transition as fast-intermediate- and slow-growing embryos, a significantly high percentage (78.0%) of the fast-developing embryos were identified as males; while a significantly lower percentage (42.5%) of slow-developing embryos were identified as males. The intermediate-developing embryos presented a sex ratio not significantly different from the total (57.5%). The deviation of sex ratio was further confirmed by embryo transfer experiment, where fast- and slow-developing embryos gave 76.2% and 25.7% male fetuses, respectively. We concluded that male mouse embryos fertilized and cultured in vitro develop faster than female embryos. © 1993 Wiley-Liss, Inc.  相似文献   

12.
We evaluated the in vitro development of porcine zygotes that were cultured in a novel culture medium, porcine zygote medium (PZM), under different conditions and compared to in vivo development. The viability of these zygotes to full term after culture was also evaluated by embryo transfer to recipients. Porcine single-cell zygotes were collected from gilts on Day 2 after hCG injection. Culture of zygotes in PZM containing 3 mg/ml of BSA (PZM-3) produced better results in terms of proportion of Day 6 blastocysts, Day 8 hatching rate, and numbers of inner cell mass (ICM) cells and total cells in Day 8 embryos than that in North Carolina State University (NCSU)-23 medium. In culture with PZM-3, embryo development was optimized in an atmosphere of 5% CO2:5% O2:90% N2 compared to 5% CO2 in air. The ICM and total cell numbers in Day 6 embryos cultured in PZM-3 or in PZM-3 in which BSA was replaced with 3 mg/ml of polyvinyl alcohol (PZM-4) were also greater than those of NCSU-23 but less than those developed in vivo. However, no difference was found in the ratio of ICM to total cells among embryos developed in PZM-3, PZM-4, or in vivo. When the Day 6 embryos that developed in PZM-4 (99 embryos) or in vivo (100 embryos) were each transferred into six recipients, no difference was found in the farrowing rate (83.3% for both treatments) and in the number of piglets born (33 and 42 piglets, respectively). Our results indicate that porcine zygotes can develop into blastocysts in a chemically defined medium and to full term by transfer to recipients after culture.  相似文献   

13.
The development of nuclear-transfer oocytes and zygotes was tested in the rabbit. Metaphase II oocytes and zygotes in the early pronuclear stage were treated with a cytoskeletal inhibitor (cytochalasin D), enucleated, and subsequently fused either with single blastomeres from eight- and 16-cell stages (oocytes and zygotes) or with pronuclei-containing karyoplasts (zygotes only). Also, nonenucleated zygotes were fused with 1/8 blastomeres. Fusion was performed by means of an electric field. Development of reconstituted embryos was monitored mainly in vitro, but a certain number of embryos developed from oocytes and zygotes receiving nuclei from eight-cell stages were also transferred into pseudopregnant does. Development of nuclear-transfer oocytes was distinctly better than that of nuclear-transfer zygotes, since 16.9% and 9.5% oocytes vs. 8.1% and 3.7% zygotes carrying eight- and 16-cell nuclei, respectively, developed to the blastocyst stage. Two advanced but already dead fetuses were found after transfer of 27 four-cell embryos obtained after fusion of oocytes with 1/8 blastomeres. No implantations were observed after transfer of 25 four-cell embryos developed from enucleated zygotes receiving eight-cell nuclei. These findings indicate that, in the rabbit, some nuclei from 16-cell embryos are still capable of promoting at least preimplantation development. Comparison between the developmental abilities of oocyte- and zygote-derived nuclear-transfer embryos also suggests that the cytoplasmic environment of recipient cell is more crucial for the development of reconstituted embryos than the stage of introduced nuclei (at least up to the 16-cell stage). The majority of pronuclear exchange embryos (69.9%) and 40% of nonenucleated zygotes receiving eight-cell nuclei were able to develop to the blastocyst stage. This latter observation indicates, similarly as with mouse, a supporting role of residual pronuclei for participation of an eight-cell nucleus in the development of reconstituted zygotes.  相似文献   

14.
The expression of TRP53 in blastocysts that had been cultured from the zygote stage in vitro for 90 h was compared with that in blastocysts collected from the uterus in C57BL6 (B6) and in F1 hybrid (B6CBF1) strain mice. In both strains, there was little TRP53 detected in blastocysts collected from the uterus. There was some increased expression in cultured embryos from B6CBF1 mice and marked increased expression in cultured B6 blastocysts. In cultured B6 embryos, there was obvious accumulation of TRP53 within the nuclear region of embryonic cells. Cultured B6 zygotes had significantly poorer rates of blastocyst formation and of capacity to undergo implantation or form viable fetuses than cultured zygotes from B6CBF1 mice or B6 blastocysts collected from the uterus. Trp53-/- zygotes (B6 background) were significantly more likely to form blastocysts than sibling wild-type embryos, with Trp53+/- embryos having an intermediate level of viability (P<0.01). On transfer of blastocysts to recipient females, Trp53-/- blastocysts were more likely to form viable fetuses than wild-type or heterozygous sibling blastocysts when the embryos resulted from culture of zygotes (P<0.001). This shift in viability did not occur when embryos were only subjected to 24 h of culture from the compacted embryo stage. Culture in vitro in the B6 strain caused a marked increase in the expression and nuclear accumulation of TRP53. This expression was a significant cause of the loss of viability that occurs on culture of zygotes from this strain in vitro.  相似文献   

15.
采用玻璃化冷冻法对ICR、C57BL/6、DBA~*C57BL/6杂交F1代三种品系小鼠的不同阶段胚胎进行冷冻保存,比较胚胎解冻后形态良好率、体外发育率和移植后的出生率,结果表明解冻后各品系小鼠胚胎从2细胞到桑椹胚形态良好率在75%以上,其中8细胞胚胎形态良好率在83%以上,而囊胚的形态良好率仅在40%左右。解冻后胚胎体外培养的发育率随胚胎发育阶段的提高而提高,桑椹胚的发育达93%以上。体外受精2细胞冷冻胚与体内受精2细胞冷冻胚比较,二者形态良好率差异无显著意义(74%∶75%),但体内受精冷冻胚的发育率明显高于体外受精冷冻胚(76%:40%,p<0.01);胚胎经过三次反复冻融后形态良好率无显著差别;冷冻2细胞胚移植后的受孕率与仔鼠出生率分别达64%和40%,但均低于新鲜2细胞胚。  相似文献   

16.
This study was designed to investigate the potential use of in vitro matured, in vitro fertilized bovine zygotes for producing transgenic calves by microinjection of foreign DNA. In Experiment 1, the effect of centrifugation (4 min, 15,000 x g, 20 degrees C) on in vitro derived bovine zygotes was evaluated. In vitro development from 2 to 8 cells was not affected (80 vs 78%) when control zygotes (n = 211) were compared with zygotes treated (n = 210) 18 h post insemination. In Experiment 2, the influence of the centrifugation alone on the developmental potential of embryos was evaluated in rabbit oviducts for 120 h. The percentage of control and treated zygotes that developed to 1, 2 to 8, 8 to 32 and more than 32 cells were 7, 54, 10 and 10% vs 7, 40, 11 and 10%, respectively. In Experiment 3, the effect of pronuclear injection with plasmid containing CRF (corticotropin releasing factor) gene or pOCAT 330 Delta1 plasmids; 2 mug/ml in Tris 10 mM, EDTA 0.2 mM, 18 to 20 h post insemination was evaluated by in vivo development in the rabbit oviduct. The embryos submitted only to centrifugation and vortexing resulted in a morula-blastocyst (> 32 cells) rate of 25% (n = 226) compared with the injected zygotes of which only 5% (n = 206) achieved the same stage. We conclude that in vitro produced bovine zygotes have a reduced developmental potential following microinjection, and this effect is not due to the centrifugation process.  相似文献   

17.
Litter size of DNA microinjected zygotes is lower than for non-manipulated zygotes. The rate of embryonic and fetal survival in early, mid and late gestation was determined to assess whether DNA integration was responsible for embryonic losses. Also, the effect of including non-microinjected embryos with injected embryos on pregnancy rate and transgenic pup production was determined. In Experiment 1, one-cell embryos from immature CD-1 mice were microinjected with a whey acidic protein promoter-human protein C gene construct. One hour after microinjection embryos were transferred to pseudopregnant recipients (45 transfers of 30 embryos each). Fifteen recipients were sacrificed on day 4, 12 and 18 of gestation and the embryos/fetuses analysed for the transgene. The percentage of embryos or fetuses that were positive for the transgene was not significantly different at any day. However, the number of viable embryos at day 4 was significantly greater than fetuses on days 12 or 18. In addition, a high degree of mosaicism was observed in day 18 fetuses and placentae recovered. In Experiment 2, one-cell embryos from CD-1 mice were microinjected and co-transferred with non-manipulated embryos (C57BL/6). Pregnancy rate and the total number of pups born were improved by addition of non-injected embryos. However, the number of transgenic mice produced was similar whether non-injected embryos were included or not. There were 32.2% (15/46) transgenic pups when 0 non-injected embryos were transferred compared with 15.1% (13/86) transgenic pups when 4 or 8 non-injected embryos were added to the transfers. In summary, a high degree of embryonic and fetal mortality occurs among microinjected embryos. Furthermore, since the percentage of transgenesis did not change throughout pregnancy, DNA integration does not appear to account for all of the embryonic losses. other factor(s) related to the microinjection procedure may be involved in the embryonic and fetal failure of microinjected embryos. Addition of non-injected embryos, although it increased pregnancy rate and the number of pups born from microinjected embryos, actually decreased the number of transgenic pups obtained per pregnancy.  相似文献   

18.
Follicular oocytes collected from prepubertal gilts at a local slaughter house were matured (36 h), fertilized and developed in vitro. Of 785 embryos, 190 (24%) embryos cleaved to the 2-4 cell stages with blastomeres of regular size by 33 h after insemination. These cleaved embryos were surgically transferred into the oviducts of 4 synchronized recipient gilts and recovered from the uterine horns 4 or 7 days later: 13 morulae, 2 blastocysts and 1 expanded blastocyst were recovered after 4 days and 3 hatched blastocysts were recovered 7 days after transfer. Re-culture in vitro sustained further development of morulae recovered 4 days after transfer: 11 of 13 morulae had developed to the blastocyst/hatched blastocyst stages. Overall, 17 of 190 (9%) embryos developed to the blastocyst stage. The results indicate that pig oocytes can be matured and fertilized in vitro, and subsequently develop to the blastocyst stage.  相似文献   

19.
Virtually all mammalian species including mouse, rat, pig, cow, and human, but not sheep and rabbit, undergo genome-wide epigenetic reprogramming by demethylation of the male pronucleus in early preimplantation development. In this study, we have investigated and compared the dynamics of DNA demethylation in preimplantation mouse and rat embryos by immunofluorescence staining with an antibody against 5-methylcytosine. We performed for the first time a detailed analysis of demethylation kinetics of early rat preimplantation embryos and have shown that active demethylation of the male pronucleus in rat zygotes proceeds with a slower kinetic than that in mouse embryos. Using dated mating we found that equally methylated male and female pronuclei were observed at 3 hr after copulation for mouse and 6 hr for rat embryos. However, a difference in methylation levels between male and female pronuclei could be observed already at 8 hr after copulation in mouse and 10 hr in rat. At 10 hr after copulation, mouse male pronuclei were completely demethylated, whereas rat zygotes at 16 hr after copulation still exhibited detectable methylation of the male pronucleus. In addition in both species, a higher DNA methylation level was found in embryos developed in vitro compared to in vivo, which may be one of the possible reasons for the described aberrations in embryonic gene expression after in vitro embryo manipulation and culture.  相似文献   

20.
Studies on genomic imprinting showed that parental genomes have complementary roles during embryogenesis, are both essential and need to be synchronized in their embryonic stage for successful development to term. To our knowledge, these studies have not been performed in species other than mice. We studied the in vitro and in vivo development of reconstructed zygotes by combining female haploid nuclear donors and androgenetic hemizygous recipients. Haploid donor embryos at the 8- or 32-cell stage were obtained from electroactivated young rabbit ova (eight pulses maximum, consisting of 0 6 kVcm(-1) for 60 microsec each, 38 min apart) which were further cultured for 24 h or 32 h. Couplets formed by both the haploid male hemizygous recipients and haploid female donor cells were electrofused (2.2 kVcm(-1) for 60 microsec duration each, 30 min apart) and their nuclear configuration determined 122 of those fused (43%: 122/286) were diploid. Reconstructed diploid zygotes developed in vitro up to the compacted morula, blastocyst and hatched stages (1/8-nuclei x 50%, 18% and 9% vs. 1/32-nuclei: 47%, 25% and 19%; P > 0.05), respectively. In embryo transfer assays, both 1/32-reconstructed zygotes and control, non-manipulated zygotes were transferred to synchronized does Four live reconstructed fetuses (4/49: 8 1% survival rate) and five in regression stage (9/49: 18% implantation rate) were observed on Day 21 post-ovulation, whereas from control zygotes, 11 fetuses were alive (11/53 21% fetal survival rate) and 2 degenerated (13/53 x 24 5% implantation rate). Similar results were obtained from a final experiment, in which development was allowed to progress to term. Six live rabbit pups derived front experimentally reconstructed zygotes (11%; 6/54) and three fetuses in regression stage were obtained; values slightly lower than those derived from non-manipulated and transferred control zygotes (18% 9/50, live born rate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号