首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inverse linear relationship between chlorophyll fluorescence yield (R) and light intensity was recorded in the near-surface waters of six lakes (New Zealand, England) of greatly different trophic status and phytoplankton species composition. This surface depression of R values could be removed by incubation of samples in dim light or darkness and was not observed in situ below a threshold irradiance (146 μEin ·m?2·s?1 for Lake Taupo, New Zealand). The time course of chlorophyll fluorescence depression and recovery in response to light treatment was measured in samples from Lake Windermere (England). Fluorescence exponentially decreased upon exposure to bright light and the response was 100% (5 m samples) or 83% (dim light-adapted 0 m samples) complete within 2 min. An increase in R values in the dim light occurred after a lag of 60 s and the rate of increase decreased exponentially with time. Full recovery took 15 min or more. Deep (6.5 m) populations from Lake Windermere exhibited large, time-dependent variations in chlorophyll fluorescence over the first 25 s of exposure to 450 nm light, whereas surface populations did not. These data were interpreted in terms of decreased spillover from PSII to PSI with increasing depth, to a minimum at the threshold light intensity below which cells are in light state 1.  相似文献   

2.
Diverse measurements of nutrient status indicators were used to test the severity of physiological phosphorus (P) limitation of phytoplankton among lake systems ranging from oligotrophic to eutrophic, based on P and chlorophyll a (Chl a) concentrations. Metabolic assays and particulate nutrient ratios were used to estimate nutrient status at sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios (F v/F m), relative electron transport rates and their response to irradiance were measured by the pulse-amplitude-modulated fluorometer. Under summer stratified conditions, P deficiency was strongest in the oligotrophic sites and nitrogen (N) status indicators and Chl a variable parameters revealed no severe N deficiency. Nutrient amendment assays showed positive associations with P additions and Chl a fluorescence parameters at P-deficient sites. In the most oligotrophic sites, N additions revealed a modest increase only detected by the Chl a fluorescence parameters. Phytoplankton communities were also associated with nutrient status, where chrysophytes and cryptophytes were important in P-deficient sites and cyanobacteria, phyrrophyta, and diatoms were prevalent in nutrient-rich sites. The results confirmed that Chl a fluorescence parameters can reveal P deficiency and indicate its severity among the range of trophic status in aquatic systems.  相似文献   

3.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

4.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

5.
To evaluate the in situ occurrence of phytoplankton photoinhibition, the light-mediated depression of chlorophyll in vivo fluorescence (IVF) and of the cellular fluorescence capacity (CFC) of phytoplankton was determined in three southeastern United States reservoirs. Vertical profiles of a fluorescence depression index (FDI) and of the CFC for reservoir phytoplankton showed that near-surface photoinhibition of fluorescence properties occurred in association with high surface irradiance and weak vertical mixing of the water column. To characterize the time scales of photochemical and photosynthetic responses to and recovery from exposure to supraoptimal light intensity, phytoplankton IVF responses and 14C-fixation rates were measured infield experiments. Phytoplankton chlorophyll IVF, CFC, and photosynthetic 14C fixation were rapidly (20–40 min) depressed when reservoir phytoplankton were exposed to surface irradiances (1700–2000 μE·m?2·s?1). Light-mediated increases in the FDI declined rapidly (20–40 min) to pre-exposure levels during a subsequent low-light (75–200 μE·m?2·s?1) period, but CFC and 14C fixation recovered more slowly (>40 min). Exposure of reservoir phytoplankton to a light-intensity gradient revealed both intensity and time thresholds for IVF and CFC depression. Phytoplankton photochemical responses to bright light operate on time scales that, in conjunction with vertical mixing, should limit the occurrence of photoinhibition to extreme irradiance environments. Our results support the hypothesis that the photoinhibition of phytoplankton productivity occurs less commonly than is indicated by fixed-depth incubation measurements.  相似文献   

6.
This research examined the application of the maximum quantum efficiency (F v/F m) and relative electron transport rate versus irradiance curves (rETR) as a rapid, sensitive assessment of Lake Erie phytoplankton nutrient status. I evaluated the potential benefits of the variable fluorescence parameters by comparing these parameters with chemical and physiological nutrient status assays. I tested the hypothesis that F v/F m and rETR curves could diagnose nutrient status in natural lake phytoplankton and be capable of discriminating which inorganic nutrient is limited temporally and spatially. F v/F m was on average highest in the more eutrophic west basin (WB) and lowest in the more oligotrophic central basin (CB). According to the chemical and physiological indicators, P deficiency was most severe in the CB during summer stratification and N deficiency was strongest in the WB during isothermal conditions. Like F v/F m, rETR at light saturation (rETRmax) and the initial slope of the rETR versus irradiance curve (α) decreased as the severity of N and P deficiency increased. Amendment with N or P stimulated increased F v/F m, rETRmax, and α in N- and P-limited samples, respectively, and abolished the photoinhibition apparent in rETR curves of nutrient-limited samples. These results supported the view that the N and P deficiency assays, and corresponding variations of variable fluorescence parameters, were valid indicators of widely variable N and P deficiency in the phytoplankton, and could be used to provide a promising tool in determining phytoplankton nutrient status. Contrary to my hopes, it did not appear that rETR–irradiance curves could discriminate between N and P deficiency. Identification of the most limiting nutrient still demanded additional information beyond the variable fluorescence measurements.  相似文献   

7.
In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (φ PSII )m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3′-(3,4-dichlorophenyl)-1′,1′-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm− Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (∼0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (∼0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required.  相似文献   

8.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

9.
The impact of UVB on the Antarctic phytoplankton photosystem II repair cycle, involving the rapidly cycled D1 protein, was studied during summer 2002. On sunny and overcast days, phytoplankton (from 1-m depth) were exposed to natural light (+UVB) and Mylar-screened (–UVB) conditions. Half of the samples from each treatment were inoculated with lincomycin, an inhibitor of synthesis of chloroplast-encoded proteins including the D1 protein. Blocking D1 repair caused significant Fv/Fm depressions on sunny days but had not effect on the overcast day. Most of the Fv/Fm depression was caused by PAR and UVA with a non-significant contribution from UVB. In the presence of D1 repair, suppressing UVB had no effect on Fv/Fm when the samples originated from a weakly stratified water column with no defined upper mixed layer (UML) while it alleviated Fv/Fm depression when the phytoplankton samples originated from within an UML deeper than the depth of UVB penetration. These results suggest that UVB had more effect on the D1 repair process than on the damage process itself but that phytoplankton sensitivity to surface UVB exposure was influenced by their previous light history, partly determined by the vertical structure of the water column.  相似文献   

10.
Light scattering, backscattering, and absorption coefficients of particles were observed at 62 locations in Lake Taihu (China) in November 2008. A method using a priori knowledge and the measured data was proposed to partition particulate scattering and absorption into contributions of phytoplankton and non-algal particles. The results showed that phytoplankton weakly contributed to the particulate scattering and backscattering with the mean b ph/b p values usually below 10% and b bph/b bt values of 0.3–3.9% in the whole visible light spectrum, and an approximate relationship of b bt ≈ b bp ≈ b bnap was regarded as reasonable in Lake Taihu. In contrast with scattering and backscattering, phytoplankton made more contributions to the particulate absorption with the mean a ph/a p values varying in a wide range of about 20–70%. Both the scattering and absorption spectra of non-algal particles can be modeled well by corresponding methods. A power function model was used to simulate the scattering spectra, which presented high predictive accuracies with MAPE values usually below 5% and RMSE values below 1.5 m−1, while the spectral absorption model also performed well with mean S nap being 0.0052 nm−1 (standard deviation, SD = 0.0010 nm−1). As to the phytoplankton absorption, a quadratic function model used was considered to have a good performance with corresponding parameters being supported at each wavelength in the spectral range of 400–700 nm. Additionally, two basic bio-optical parameters were determined, that is, b nap*(550) = 0.604 m2 g−1 and a ph*(675) = 0.0288 m2 mg−1. Overall, these results obtained in the present study supply us with new knowledge about optical properties of suspended particulates in an inland and highly turbid lake (Lake Taihu), which are beneficial to the development of analytical models of water color remote sensing.  相似文献   

11.
Effect of preheating of beet spinach leaves on chlorophyll a fluorescence yield was analyzed with the help of additional high intensity illumination pulses using a pulse modulated fluorometer. Preheating at mildly elevated temperature (35–45°C) causes a shift in the redox state of secondary donor of photosystem II, possibly due to uncoupling of phosphorylation because of thermal induced membrane disorganization and associated alkalinization of intra thylakoid space. Also, at these preheating temperatures, a rise in photosystem I catalyzed electron transfer has been shown to occur. These two effects induce rapid quenching of Chi a fluorescence, which drops even in the presence of actinic light, below the level of initial fluorescence (Fo′ monitored by the weak modulated probing light. Preheating of leaf segments induces an increase in fluorescence in the presence of dluron, which blocks electron flow between two photosystems, and thus this increases in fluorescence yield (Fo′ as monitored by weak modulated light, is not solely due to disorganization of light harvesting Chi-protein complex but also due to a shift in the redox equilibrium of the donor at the oxidizing side of photosystem II resulting in rapid reduction of QA the stable primary acceptor of photosystem II. In 50°C preheated DCMU treated samples, the fluorescence yield increases in weak modulated light and it approaches that of maximal steady state (Fmax) level. At preheating temperature of 48°–50°C, the inactivation of enzymes in the reducing side of photosystem I, causes an impairment of the reoxidation of QA and under this condition, a strong illumination causes quenching of Chi a fluorescence. This quenching seems to arise because of accumulation of the P680+, the oxidized physiological donor of photosystem which is a quencher of Chi a fluorescence. This quenching depended on the pulse intensity and duration which saturates P680+ accumulation and is greatly manifested when water oxidation complex is damaged.  相似文献   

12.
With a portable PAM-2000 fluorometer it was observed that responses of initial chlorophyll fluorescence Fo level to strong light were different in various plant species examined. When the photochemical efficiency of Photosystem II, Fv/Fm, declined, Fo increased significantly in leaves of some plants such as soybean and cotton, while Fo decreased remarkably in other plants such as wheat and barley. In order to explore the mechanism of the increase in Fo in soybean leaves, the change in D1 protein amount and effects of lincomycin and far-red light on these fluorescence parameters were observed by SDS–PAGE combined with gel scanning and chlorophyll fluorescence analysis. The following results were obtained. (1) The amount of inactive PS II reaction centers increased under strong light and decreased during subsequent dark recovery [Hong and Xu (1997) Chinese Sci Bull 42(8): 684–689]. (2) No net loss of D1 protein occurred after strong light treatment. (3) Lincomycin taken up through petioles following strong light treatment had no significant effect on D1 protein level and the decay of Fo in the dark. (4) Far-red light applied after strong light treatment could largely attenuate the increase in Fo and accelerate Fo decay in the dark. Based on these results, it is deduced that the increase in Fo under strong light is mainly due to reversible inactivation of part of PS II reaction centers, rather than the net loss of D1 protein and that reversible inactivation of PS II is prevalent in some plants.  相似文献   

13.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB m-dinitrobenzene - FM maximum Chl fluorescence - F0 initial fluorescence - Fv variable fluorescence - I pheophytin a primary electron acceptor of PS2 - P680 chlorophyll a of photochemical centre - PS2 photosystem 2 - QA primary stable electron acceptor of PS2 - Chl chlorophyll - LHC2 light harvesting Chl a/b complex of PS2 - MES 2(N-morpholino) ethanesulfonic acid - DCMU 3-(3-4-dichlorophenyl) 1-1 dimethylurea - PPBQ phenyl-p-benzo-quinone - BBY PS2-enriched membranes prepared as in Berthold et al. (1981) - Q400 PS2 electron acceptor with a midpoint potential of 400 mV  相似文献   

14.
Inhibition of photosystem 2 by the peptide-modification reagent, tetranitromethane, has been investigated with spinach digitonin particles. In the presence of tetranitromethane, (1) the initial fluoresence yield is suppressed with a concomitant elimination of the variable component of fluorescence; (2) the optical absorption transient at 820 nm, attributed to P680+, is greatly attenuated; (3) diphenylcarbazide-supported photoreduction of dichlorophenol indophenol is abolished; and (4) electron spin resonance Signal 2f and Signal 2s are eliminated. These results are consistent with multiple sites of modification in photosystem 2 by tetranitromethane, and suggest further that this reagent can inhibit charge stabilization in the reaction center.Abbreviations D1 electron donor to P680+ in oxygen-inhibited photosystem 2 preparations - DPIP 2,6-dichlorophenol indophenol - esr electron spin resonance - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fv variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino)ethanesulfonic acid - P680 primary electron donor chlorophyll of photosystem 2 - Ph pheophytin - PS 2-photosystem 2 - Qa primary quinone electron acceptor - Qb secondary quinone acceptor - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine - TNM tetranitromethane  相似文献   

15.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

16.
In grapevine (Vitis vinifera L.) leaf chlorophyll (Chl) a and Chl b and carotenoid contents were higher in plants grown at low photon flux densities (PFD) than in those grown at medium and high PFD. The highest Chl a variable to maximum fluorescence ratio Fv/Fm was observed in plants grown at medium PFD while the minimum fluorescence F0 was highest in those at high PFD. In isolated thylakoids, both high and low PFD caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor diphenyl carbazide significantly restored the loss of PS2 activity in low PFD leaves.  相似文献   

17.
The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (??PSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast.  相似文献   

18.
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 +A0 ? with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 +A0 ?, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.  相似文献   

19.
The use of relative variable fluorescence (RVF) of chlorophyll, as measured in the presence of Diuron, an inhibitor of electron transfer, for the estimation of the photosynthetic activity of plankton microalgae was analyzed under a wide range of light intensities in the PAR region. Oxygen evolution rates (estimated by the method of light and dark bottles and the amperometric method), RVF, and chlorophyll a concentration were measured in parallel in natural algal cenoses and microecosystems. When the previously used regression equation, in the form A = b(F/F d)C chl I, where A is O2 evolution rate (g/(m3 h), F/F d is RVF (relative units), C chl is chlorophyll a concentration (mg/m3), and I is light intensity (W/m2), was verified in the PAR region, we observed a nonlinear dependence of the correction coefficient b on I, which can be described by the formula b = 6.227 × 103I. This result agrees with the hypothesis that chlorophyll a fluorescence quenching comprises photochemical (qQ) and energy (qE) components. On the basis of the energy model, we determined the upper limit b max = 0.003 for light intensity range I< 4.4 W/m2 and the lower limit b min = 0.0003 for I = 400 W/m2.  相似文献   

20.
Prior work demonstrated that Heuchera americana, an evergreen herb inhabiting the deciduous forest understory in the southeastern United States, has a 3-4-fold greater photosynthetic capacity under the low-temperature, strong-light, open canopies of winter compared to the high-temperature, weak-light, closed canopies of summer. Moreover, despite the reductions in soil nitrogen, the chilling temperatures, and the increased quantum flux associated with winter, chronic photoinhibition was not observed in this species at this time of the year. We were interested in the photosynthetic acclimation and photoinhibition characteristics of this species when grown under contrasting light and nitrogen regimes. Newly expanded shade-acclimated leaves of forest-grown plants exposed to strong light varying in intensity and duration at 25°C showed a reduction in Fv/Fm (the ratio of variable to maximum room temperature chlorophyll fluorescence measured after dark adaptation), which was correlated with a decline in øa (the intrinsic quantum yield of CO2-saturated O2 evolution on an absorbed light basis). Plants grown in the glasshouse under contrasting light (high and low light; HL and LL, respectively) and nitrogen supply (high and low nitrogen; HN and LN, respectively) regimes showed that photosynthetic acclimation to HL was impaired in LN regimes. The HL-LN plants also had the lowest values of Fv/Fm and of ø on both incident and absorbed light bases and had 50% less chlorophyll (per unit area) compared to plants from other growth regimes. Controlled exposure to bright light at low temperatures (2-3°C) for 3 h resulted in a sharp decrease in Fv/Fm (and rise in Fo, the minimum fluorescence yield) in all plants. Shade-grown plants from both N regimes were highly susceptible to chronic photoinhibition, as indicated by a greater reduction in Fv/Fm and incomplete recovery after 18 h in weak light at 25°C. The HL-HN plants were the least susceptible to chronic photoinhibition, having the smallest decrease in Fv/Fm with near full recovery within 6 h. The decline in Fv/Fm in HL-LN plants was comparable to that of shade-acclimated plants, but recovered fully within 6 h. Low-N plants from both light regimes displayed greater increases in Fo which did not return to pretreatment levels after 18 h of recovery. These studies indicate that HL-LN plants were sensitive to chronic photoinhibition and, at the same time, had a high capacity for dynamic photoinhibition. Experimental garden studies showed that H. americana grown in an open field in summer were photoinhibited and did not fully recover overnight or during extended periods of weak light. These results are discussed in relation to the photosynthetic acclimation of H. americana under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号