首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

2.
Laboratory streams were used in a 42-day experiment designed to investigate how the spatial and temporal distribution of lotic periphyton created by current flow over cobble-size substrates is a affected by irradiance. The streams contained 22.5 × 22.5 × 4 cm substrate blocks and were exposed to either 385, 90 or 20 μE·m?2·s?1. We monitored periphyton succession in fast current regimes on top of blocks and in slower current regimes on surfaces recessed between blocks. The absolute differences in AFDW algal biomass between top and recessed substrates were significantly affected by irradiance and time. At the end of the experiment, biomass in streams exposed to 385 μE·m?2·s?1. was approximately 2 and 8 times greater than in streams exposed to 90 and 20 μE·m?2·s?1, respectively. Differences in biomass were greater between irradiance levels than between top and recessed substrates within an irradiance level. Irradiance also had a greater effect than current regime on the taxonomic composition of assemblages. Oscillatoria agardhii Gomont and Navicula minima Grun. characterized assemblages at 20 μE·m?2·s?1, whereas Fragilaria vaucheriae (Kütz.), Nitzschia oregona Sov., Navicula arvensis Hust. and Stigeoclonium tenue (Ag.) Kütz. were more abundant at the two higher irradiances. Detrended correspondence analysis indicated that the rate of succession was relatively high for assemblages at high irradiance and in the slow current regimes between blocks. The results suggested that in natural streams, periphyton patches produced by large differences in irradiance should have a greater effect on periphyton heterogeneity than substrate-induced patches. Moreover, the heterogeneity of algal patches produced by hydrologic differences over a substrate is constrained by irradiance level.  相似文献   

3.
Excised ligulae of Glossophora kunthii from central Chile were cultured of temperatures of 5–25° C, photoperiods of 16:8 and 8:16 h LD cycles, with photon irradiances of 10 and 50 μmol · m?2· s?1. Growth of the ligulae, number of fertile ligulae and number of tetrasporangia forming on the ligulae were assessed. Ligulae tolerated temperatures between 10 and 23°C. Temperature interacted with daylength and photon dose, determining quantitative responses in the growth and fertility of ligulae. Growth was least at 8:16 h LD and was not affected significantly by temperature. It was greatest at 16:8 h LD, 50 μmol · m?2· s?1 and increased with temperature up to 20°C. Percentage of fertile ligulae and number of tetrasporangia increased with temperature at the 8:16 h LD cycle, reaching a maximum at 20°C. Fertility was low at 16:8 h LD, except at 20° C (and low photon dose) suggesting that reproduction at 20° C is independent of daylength in this species. Ligulae grew larger at the long-day photoperiods and the proportions of fertile ligulae were higher at the short-day photoperiods, irrespective of the total photon dose received. These results suggest that some aspects of growth and fertility are controlled by photoperiod.  相似文献   

4.
Sea ice microalgae in McMurdo Sound, Antarctica were examined for photosynthesis-irradiance relationships and for the extent and time course of their photoadaptation to a reduction in in situ irradiance. Algae were collected from the bottom centimeter of coarse-grained congelation ice in an area free of natural snow cover. Photosynthetic rate was determined in short term (1 h) incubations at ?2° C over a range of irradiance from 0 to 286 μE·m?2·s?1. Assimilation numbers were consistently below 0.1 mg C·mg chl a?1·h?1. The Ik's3 averaged only 7 μE·m?2·s?1, and photosynthesis was inhibited at irradiances above 25 μE·m?2·s?1. Photosynthetic parameters of the ice algal community were examined over a nine day period following the addition of 4 cm of surface snow while a control area remained snow-free. A reduction of 40% in PmB relative to the control occurred after two days of snow cover; α, β, Ik, and Im were not significantly altered. Low assimilation numbers and constant standing crop size, however, suggested that the algal bloom may have already reached stationary growth phase, possibly minimizing their photoadaptive response.  相似文献   

5.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

6.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

7.
In many lakes in the northern United States and Canada the filamentous green alga Ulothrix zonata (Weber and Mohr) Kütz grows abundantly in early spring in shallow waters. Asexual reproduction occurs by formation of quadriflagellate zoospores which disrupt, the integrity of the cells upon release causing the filament to disintegrate. Study of the effects of 100 different combinations of irradiance, temperature and photoperiod revealed that zoospore formation is favored by high temperatures near 20°C, high light levels of 520 μE·m?2·s?1 and photoperiods of either short day (8:16 h light-dark) or long day cycles (16:8 h light-dark). Zoospore formation is minimal under conditions of low temperature (5°C), low irradiance (32.5 μE·m?2·s?1) and neutral day-lengths (12:12 h light-dark). These observations explain the decline in U. zonata biomass when water temperatures rise above 10° C. The combined effect of rising water temperatures and increasing daylengths causes progressively more filaments to switch from vegetable growth to zoospore production resulting in an increasing loss of biomass.  相似文献   

8.
To evaluate the in situ occurrence of phytoplankton photoinhibition, the light-mediated depression of chlorophyll in vivo fluorescence (IVF) and of the cellular fluorescence capacity (CFC) of phytoplankton was determined in three southeastern United States reservoirs. Vertical profiles of a fluorescence depression index (FDI) and of the CFC for reservoir phytoplankton showed that near-surface photoinhibition of fluorescence properties occurred in association with high surface irradiance and weak vertical mixing of the water column. To characterize the time scales of photochemical and photosynthetic responses to and recovery from exposure to supraoptimal light intensity, phytoplankton IVF responses and 14C-fixation rates were measured infield experiments. Phytoplankton chlorophyll IVF, CFC, and photosynthetic 14C fixation were rapidly (20–40 min) depressed when reservoir phytoplankton were exposed to surface irradiances (1700–2000 μE·m?2·s?1). Light-mediated increases in the FDI declined rapidly (20–40 min) to pre-exposure levels during a subsequent low-light (75–200 μE·m?2·s?1) period, but CFC and 14C fixation recovered more slowly (>40 min). Exposure of reservoir phytoplankton to a light-intensity gradient revealed both intensity and time thresholds for IVF and CFC depression. Phytoplankton photochemical responses to bright light operate on time scales that, in conjunction with vertical mixing, should limit the occurrence of photoinhibition to extreme irradiance environments. Our results support the hypothesis that the photoinhibition of phytoplankton productivity occurs less commonly than is indicated by fixed-depth incubation measurements.  相似文献   

9.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

10.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

11.
The red alga Acrosymphyton purpuriferum (J. Ag.) Sjöst. (Dumontiaceae) is a short day plant in the formation of its tetrasporangia. Tetrasporogenesis was not inhibited by 1 h night-breaks when given at any time during the long (16 h) dark period (tested at 2 h intervals). However, tetrasporogenesis was inhibited when short (8 h) main photoperiods were extended beyond the critical daylength with supplementary light periods (8 h) at an irradiance below photosynthetic compensation. The threshold irradiance for inhibition of tetrasporogenesis was far lower when supplementary light periods preceded the main photoperiod than when they followed it (<0.05 μmol·m−2·s−1 vs. 3 μmol·m−2·s−1). The threshold level also depended on the irradiance given during the main photoperiod and was higher after a main photoperiod in bright light than after one in dim light (threshold at 3 μmol·m−2·s−1 after a main photoperiod at ca. 65 μmol·m−2·s−1 vs. threshold at <0.5 μmol·m−2·s−1 after a main photoperiod at ca. 35 μmol·m−2·s−1). The spectral dependence of the response was investigated in day-extensions (supplementary light period (8 h) after main photoperiod (8 h) at 48 μmol·m−2·s−1) with narrow band coloured light. Blue light (λ= 420 nm) was most effective, with 50% inhibition at a quantum-dose of 2.3 mmol·m−2. However, yellow (λ= 563 nm) and red light (λ= 600 nm; λ= 670 nm) also caused some inhibition, with ca. 30% of the effectiveness of blue light. Only far-red light (λ= 710 nm; λ= 730 nm) was relatively ineffective with no significant inhibition of tetrasporogenesis at quantum-doses of up to 20 mmol·m−2.  相似文献   

12.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

13.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

14.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

15.
Eight species of marine phytoplankton commonly used in aquaculture were grown under a range of photon flux densities (PEDs) and analyzed for their fatty acid (FA) composition. Fatty and composition changed considerably at different PFDs although no consistent correlation between the relative proportion of a single FA and μ or chl a · cell?1 was apparent. Within an individual species the percentage of certain fatty acids covaried with PFDs, growth rate and/or chl a · cell?1. The light conditions which produced the greatest proportion of the essential fatty acids was species specific. Eicosapentaenoic acid. 20:5ω3 increased from 6.1% to 15.5% of the total fatty acids of Chaetoceros simplex Ostenfield grown at PFDs which decreased from 225 μE · m?2· s?1 to 6 μE · m?2· s?1, respectively. Most species had their greatest proportion of 20: 5ω3 at low levels of irradiance. Conversely, docosahexaenoic acid, 22:6ω3, decreased from 9.7% to 3.6% of the total fatty acids in Pavlova lutheri Droop as PFD decreased. The percentage of 22:6ω3 generally decreased with decreasing irradiances. In all diatoms the percentage of 16:0 was significantly correlated with PFD, and in three of five diatoms, with growth rate (μ). Results suggest that fatty acid composition is a highly dynamic component of cellular physiology, which responds significantly to variation in PFD.  相似文献   

16.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

17.
Excised ligulae of Glossophora kunthii (C. Ag.) J. Ag. were cultured in photoperiods of 4–24 h and photon fluence rates of 10–75 μmol.m?2.s?1. Daylength interacted with irradiance on the growth of the ligulae. Maximal growth of primary ligulae occurred in long-day regimens with high irradiances suggesting an effect of irradiance on photosynthesis and growth. In contrast, growth of secondary ligulae was greatest in short-day regimes. Differences were significant at the highest irradiance tested. Differentiation of tetrasporangia on the ligulae is a short-day photoperiodic response. Daylengths of 8.5 h or less induced a sharp increase in numbers of fertile ligulae and tetrasporangia attaining maturity. Interruptions of the dark period decreased the development of tetrasporangia; the number of interruptions had a cumulative inhibitory effect. Differentiation of reproductive structures was influenced by interactions of photoperiod and irradiance. Maximum numbers of tetrasporangia were formed at short-day regimes and low irradiances; differentiation was completely inhibited at long-day conditions and high irradiance.  相似文献   

18.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

19.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

20.
A laboratory experiment was conducted for 75 days to examine how irradiance levels and grazing influence algal biomass and community structure. Twelve laboratory streams were used for experimental analyses, with four channels exposed to one of three irradiance levels (15, 100, or 400 μE·m?2·s?1). Three of the four stream at each light level were stocked with the snail Juga silicula (250·m?2), leaving one stream at each light level without snails. Grazed stream exposed to low light levels developed low amounts of algal biomass (<2 g AFDW·m?2) and were dominated by adnately attached diatoms. Mean algal biomass increased over time in the grazed streams exposed to intermediate light; by day 75, these streams were characterized by moderate algal biomasses (30-40 g AFDW·m?2) and filamentous chlorophytes. Algal assemblages in high light, grazed channels had high levels of biomass at day 43 (70 g AFDW·m?2) that declined to 30 g AFDW·m?2at day 75 and were dominated by chlorophytes. Among ungrazed streams, algal biomass at day 75 was relatively low in the low light streams (<7g AFDW·m?2) and was dominated by adnately attached diatoms. Ungrazed streams exposed to intermediate and high light levels had moderate biomasses (23 and 19 g AFDW·m?2, respectively) and were dominated by chlorophytes and large diatoms. Grazing appeared both to delay and alter successional trajectories of algal assemblages, with alterations most noticeable during early seral stages at intermediate and high light levels. Grazing had the least effect on successional trajectories at low light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号