首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) at 10 ng/ml reduces by over 50-fold the extracellular Ca2+ required for multiplication of normal human skin fibroblasts. Therefore, a Ca2+-related process may play a central role in the mechanism by which EGF exerts its effect on cell multiplication.  相似文献   

2.
Epidermal growth factor (EGF) at 10 ng/ml reduces by over 50-fold the extracellular Ca2+ required for multiplication of normal human skin fibroblasts. Therefore, a Ca2+-related process may play a central role in the mechanism by which EGF exerts its effect on cell multiplication.  相似文献   

3.
The calcium-sensitive fluorescent indicator fura-2 and a microscope equipped for rapidly changing excitation wavelengths were used to look at the effects of growth factors on cytosolic free calcium ([Ca2+]i,) in NRK-49F cells. In these cells bradykinin induced a rapid increase in [Ca2+]i, which generally decayed to near basal [Ca2+]i within 3 minutes. The initial rise in [Ca2+]i in response to bradykinin was relatively independent of extracellular calcium; however, the decay to basal [Ca2+]i was more rapid in the absence of extracellular calcium. Measurements made on individual cells showed a heterogeneity in the response to bradykinin. Epidermal growth factor (EGF) had no effect on [Ca2+]i in NRK-49F cells when added alone in the presence of extracellular calcium. Simultaneous addition of bradykinin and EGF produced a more prolonged increase in [Ca2+]i than bradykinin alone. The prolongation was dependent on the presence of extracellular calcium and did not occur in its absence. Transient increases in [Ca2+]i occurring after the initial peak were occasionally seen in these cells. Our results indicate that there is rapid interaction between the signaling mechanisms for bradykinin and EGF. When this occurs, one effect is the transport of calcium into the cell from the extracellular environment, causing a more prolonged rise in [Ca2+]i. This effect occurs within 1 minute after combined addition of bradykinin and EGF.  相似文献   

4.
The effect of platelet-derived growth factor (PDGF) on cellular Ca2+ was examined in BALB/c-3T3 cells. PDGF induced:
1. 1. A decrease in cell 45Ca2+ content.
2. 2. An apparent increased rate of efflux of preloaded 45Ca2+.
3. 3. A decrease in residual intracellular 45Ca2+ remaining after rapid efflux.
4. 4. When added after the rapid phase of efflux of 45Ca2+ had occurred, an immediate decrease in post-efflux residual intracellular 45Ca2+.
All of the observed changes in 45Ca2+ induced by PDGF are consistent with a rapid release of Ca2+ from an intracellular Ca2+ pool that has the slowest efflux and is relatively inaccessible to extracellular EDTA. When incubated with chlortetracycline (CTC), a fluorescent Ca2+ probe, 3T3 cell mitochondria became intensely fluorescent. Addition of PDGF resulted in a rapid decrease in CTC fluorescence intensity in both adherent and suspended 3T3 cells. The effects of PDGF on 3T3 cell Ca2+ stores and CTC fluorescence intensity were identical with the effects of the Ca2+ ionophore A23187 and of the proton ionophore carbonyl cyanide m-chlorophenyl hydrazone. Serum, which contains PDGF, also altered intracellular Ca2+ stores, but platelet-poor plasma, which does not contain PDGF, had no effect. EGF, insulin, and tetradecanoyl phorbol acetate (TPA), other factors which stimulate 3T3 cell growth, did not alter 3T3 cell Ca2+ stores. Release of Ca2+ from intracellular sequestration sites may be a mechanism by which PDGF Stimulates Cell growth.  相似文献   

5.
Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.  相似文献   

6.
Previous studies have demonstrated a strict extracellular Ca2+ dependence for the G0 to G1 and G1 to S transition in growth factor-treated T51B rat liver cells that is associated with increased levels of protein kinase C activity. Consequently, we have examined these cells for changes in phospholipid-derived second messengers in response to epidermal growth factor (EGF) and thrombin in order to determine which signals are generated during the initiation of the G0 to G1 transition. Thrombin is coupled to a phosphoinositide hydrolyzing phospholipase C, as we have found a rapid Ca2+-independent increase in the levels of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3), inositol 1,4-bisphosphate (Ins[1,4]P2), and inositol 4-monophosphate (Ins[4]P), as well as a concomitant, transient elevation in diacylglycerol. No changes in either intracellular or extracellular choline metabolites, or an increase in DNA synthesis, were found in response to thrombin. By contrast, treatment of T51B cells with EGF results in a slower, more prolonged extracellular Ca2+-dependent increase in both [3H]-glycerol radiolabeled diacylglycerol, and diacylglycerol mass, an increase in choline release into the extracellular medium, and eventually a substantial DNA synthesis. We were, however, unable to detect any changes in phosphatidylinositol (Ptdlns) turnover, either by accumulation of inositol phosphates or by changes in phospholipids in response to EGF. These results indicate that DNA synthesis can readily occur in the absence of stimulated Ptdlns turnover, and that Ptdlns turnover is not sufficient in itself or necessary to induce DNA synthesis and is not necessary for a Ca2+-dependent increase in diacylglycerol. Moreover, we have demonstrated that the extracellular Ca2+-dependent increase in diacylglycerol levels in response to EGF is associated with an increase in extracellular choline release, which is indicative of an activation of a phosphatidylcholine-linked phospholipase D. These results suggest that diacylglycerol sources other than Ptdlns's may be important in the extracellular Ca2+-dependent regulation of EGF-mediated cell replication. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Pretreatment of Balbc-3T3 cells with platelet-derived growth factor (PDGF) has been shown to decrease binding sites for 125I-labelled epidermal growth factor (EGF) (1,2,3). Agents which elevate cellular cyclic AMP concentrations enhance this ability, and the change in EGF binding is inversely proportional to the elevation of cyclic AMP. In quiescent density arrested cells, the sensitivity of cells to down regulation of EGF receptors by PDGF is proportional to the cyclic AMP content of the cultures in three different cell lines. Agents which elevate cyclic AMP and which potentiate PDGF mediated heterologous down regulation of EGF receptors are able, like cholera toxin (3), to stimulate cells to synthesize DNA in defined medium in the absence of EGF. Down regulation of EGF receptors by PDGF in combination with agents elevating cyclic AMP effectively mimics the action of EGF.  相似文献   

8.
The effects of cell density and growth upon fluid phase endocytosis were investigated in quiescent and growing cultures of monkey arterial smooth muscle cells. Cells were maintained in a quiescent state of growth in 5% plasma-derived serum. Subsequent exposure of subconfluent cultures to the specific mitogens, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), or to whole blood serum, resulted in up to 4-fold increases in the rate of fluid endocytosis/cell. The changes began several hours after entry into G1 phase of the cell cycle and continued through S. The fraction of cells entering the growth cycle was variable (PDGF=FGF>EGF) and a close correlation existed between the rate of endocytosis and the fraction of [3H]thymidine-labelled cells (r = 0.929, p<0.01). At a range of cell densities, the rate of fluid endocytosis/cell was similar in sparse, confluent and post-confluent cultures of quiescent cells; in contrast, in growing cells there was density-dependent inhibition of endocytosis. Furthermore, when quiescent cells were in contact with each other and were then exposed to mitogens, the growth response was diminished and there was only a 25–50% increase in the rate of endocytosis, even in the presence of high concentrations of growth factors.These studies indicate that the influence of cell density upon fluid endocytosis in arterial smooth muscle cells is indirect in that it represents a secondary effect of decreased mitogenic response to specific growth factors.  相似文献   

9.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   

10.
Lowering of extracellular Ca2+ levels will reversibly arrest the growth of human fibroblasts (WI38). Simian virus40(SV40)-transformed WI38 cells do not exhibit this Ca2+-dependent arrest. One possibility for this difference in Ca2+ requirement is that extracellular or surface membrane-bound Ca2+ may be required for growth factor receptor-mediated endocytosis and this Ca2+ requirement may differ in normal versus transformed cells. In this study we have evaluated the role of Ca2+ in the binding, internalization, and degradation of epidermal growth factor (EGF) in the WI38 and SV40 WI38 cell. The binding of [125I]EGF to the cell surface is not significantly altered by lowering of Ca2+ to 10?5-M levels in either the normal or transformed cell. At this Ca2+ level, growth of the normal cell is inhibited. The subsequent internalization of EGF is reduced nearly threefold in the normal cell but not in the transformed cell following Ca2+ deprivation. Degradation of the EGF-receptor complex is also sensitive to Ca2+. A twofold reduction in the rate of release of acid-soluble 125I occurs in the normal but not the transformed cell under conditions of lowered medium Ca2+. In contrast, 2-chloro-10-3-aminopropyl phenothiazine (CP), an inhibitor of the Ca2+-dependent regulator protein calmodulin, causes an inhibition of [125I]EGF internalization and degradation in both the normal and transformed WI38 cell, and a marked inhibition of [125I]EGF binding to the cell surface receptor of the transformed cell but not the normal cell.  相似文献   

11.
OPCs (oligodendrocyte precursor cells) express golli proteins which, through regulation of Ca2+ influx, appear to be important in OPC process extension/retraction and migration. The aim of the present study was to examine further the role of golli in regulating OPC development. The effects of golli ablation and overexpression were examined in primary cultures of OPCs prepared from golli-KO (knockout) and JOE (golli J37-overexpressing) mice. In OPCs lacking golli, or overexpressing golli, differentiation induced by growth factor withdrawal was impaired. Proliferation analysis in the presence of PDGF (platelet-derived growth factor), revealed that golli enhanced the mitogen-stimulated proliferation of OPCs through activation of SOCCs (store-operated Ca2+ channels). PDGF treatment induced a biphasic increase in OPC intracellular Ca2+, and golli specifically increased Ca2+ influx during the second SOCC-dependent phase that followed the initial release of Ca2+ from intracellular stores. This store-operated Ca2+ uptake appeared to be essential for cell division, since specific SOCC antagonists completely blocked the effects of PDGF and golli on OPC proliferation. Additionally, in OPCs overexpressing golli, increased cell death was observed after mitogen withdrawal. This phenomenon could be prevented by exposure to VOCC (voltage-operated Ca2+ channel) blockers, indicating that the effect of golli on cell death involved increased Ca2+ influx through VOCCs. The results showed a clear effect of golli on OPC development and support a role for golli in modulating multiple Ca2+-regulatory events through VOCCs and SOCCs. Our results also suggest that PDGF engagement of its receptor resulting in OPC proliferation proceeds through activation of SOCCs.  相似文献   

12.
Sphingosine-1-phosphate (S1P) regulates cell growth and survival, migration and adhesion in many cell types. S1P is generated by sphingosine kinases (SphKs), and dephosphorylated by phosphatases or cleaved by S1P lyase. Extracellular S1P activates specific G protein-coupled receptors while intracellular S1P can mobilize Ca2+ from thapsigargin-sensitive stores. Here, we have studied Ca2+ signalling in mouse embryonic fibroblasts (MEFs) deficient in S1P lyase. In these cells, S1P and sphingosine concentrations were elevated about 6-fold and 2-fold, respectively, as measured by liquid chromatography/tandem mass spectrometry. Measurements with fura-2-loaded cells in suspension revealed that resting [Ca2+]i was elevated and agonist-induced [Ca2+]i increases were augmented in S1P lyase-deficient MEFs both in the presence and absence of extracellular Ca2+. Importantly, [Ca2+]i increases and Ca2+ mobilization induced by the SERCA inhibitor, thapsigargin, were augmented, indicating enhanced Ca2+ storage in S1P lyase-deficient MEFs. Measurements with single cells expressing the calmodulin-based Ca2+ sensor, cameleon, revealed that at least two cell types could be distinguished in both MEF cell populations, one with a rapid and transient [Ca2+]i increase and the other with a slower and prolonged [Ca2+]i elevation upon stimulation with thapsigargin. The area under the time course of thapsigargin-induced [Ca2+]i increases, reflecting overall Ca2+ release, was significantly increased by more than 50% in both rapidly and slowly responding S1P lyase-deficient cells. It is concluded that elevated concentrations of S1P and/or sphingosine lead to enhanced Ca2+ storage and elevated basal [Ca2+]i. S1P metabolism thus plays a role not only in acute Ca2+ mobilization but also in long-term regulation of Ca2+ homeostasis.  相似文献   

13.
The influence of epidermal growth factor (EGF) on the Ca2+ requirement of normal (NP-2s) and neoplastic human epithelial (PC-3) cells was studied using a clonal growth assay. The interaction of Ca2+ and EGF was investigated by kinetic analysis of dose-response experiments in which the Ca2+ or EGF concentration necessary for half-maximal growth, Km were determined. The normal epithelial cells required 80 times more calcium than did the cancer cells. In the presence of EGF, the Ca2+ requirement of both cell types was virtually identical. EGF did not affect the growth rate of the cancer line. The interaction between Ca2+and EGF was found to be unidirectional since EGF reduced the KmCa2+ 120-fold, whereas Ca2+ had no effect on the EGF dose-response.  相似文献   

14.
In this study we investigated the responses of intracellular calcium ([Ca2+]i) and protein kinase C (PKC) to PDGF in U-1242 MG cells. PDGF-BB stimulated [3H]PDBu binding approximately 2–3 fold. This response was inhibited by preincubating the cells with an inhibitor of phospholipase C (PLC), U73122, suggesting that PLC mediates the induction of PKC translocation by PDGF. PDGF also increased the concentration of [Ca2+]i that was attenuated in a calcium-free medium. This indicates that PDGF-induced elevation of [Ca2+]i is mainly due to influx of extracellular calcium. PDGF-stimulated translocation of PKC was inhibited by the intracellular calcium buffer BAPTA/AM. All gangliosides studied except GM3 inhibited these responses with similar efficacy. Collectively, these results indicate that the signal transduction pathway initiated by PDGF leading to PKC translocation in U-1242 MG cells is intact, and this pathway is inhibited by several gangliosides.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

15.
Control of plasma membrane connexin hemichannel opening is indispensable, and is achieved by physiological extracellular divalent ion concentrations. Here, we explore the differences between regulation by Ca2+ and Mg2+ of human connexin26 (hCx26) hemichannels and the role of a specific interaction in regulation by Ca2+. To effect hemichannel closure, the apparent affinity of Ca2+ (0.33 mM) is higher than for Mg2+ (1.8 mM). Hemichannel closure is accelerated by physiological Ca2+ concentrations, but non-physiological concentrations of extracellular Mg2+ are required for this effect. Our recent report provided evidence that extracellular Ca2+ facilitates hCx26 hemichannel closing by disrupting a salt bridge interaction between positions D50 and K61 that stabilizes the open state. New evidence from mutant cycle analysis indicates that D50 also interacts with Q48. We find that the D50-Q48 interaction contributes to stabilization of the open state, but that it is relatively insensitive to disruption by extracellular Ca2+ compared with the D50-K61 interaction.  相似文献   

16.
Summary The growth of WI-38 cells in serum-free growth medium with and without hormone supplementation in the presence of elevated Ca2+ concentrations was investigated. At 5 mM CaCl2, WI-38 cells seeded at low density without serum or hormone supplementation showed up to a 12-fold increased in cell number at saturation density over that obtained at day 1. Saturation densities were comparable when either 5 mM CaCl2 or epidermal growth factor (1 mM CaCl2) was used in the presence of insulin, dexamethasone and transferrin. Combining suboptimal doses of epidermal growth factor and CaCl2 resulted in an additive effect on saturation density. Thus, nornal human diploid cells are capable of substantial growth in serum-free, hormone-free growth medium. In contrast, confluent cultures refed with the same medium are not responsive to elevated Ca2+ concentrations. In fact, elevated Ca2+ concentrations inhibited the proliferative response of confluent cultures to epidermal growth factor, but enhanced their response to the combined treatment of insulin, transferrin and dexamethasone. This work was supported by the United States Public Health Society grants T-32, CA09171 and AG-00378. Editor's Statement This paper rigorously dissects the interplay among external Ca2+ concentration, cell density and specific growth factors on fibroblast growth in defined medium. Wallace L. McKeehan  相似文献   

17.
Down-modulation of Ca2+-activated, phospholipid-dependent protein kinase (protein binase C), which was accomplished by pretreatment with phorbol-12,13-dibutyrate for 24 h, resulted in the loss of a phorbol ester-induced stimulation of hexose transport activity in Swiss 3T3 cells. In these cells, however, platelet-derived growth factor as well as Ca2+ ionophore A23187 were still able to induce stimulation of hexose transport activity accompanied by the elevation of intracellular free Ca2+ concentration. Since chelation of extracellular Ca2+ inhibited this stimulation, inflow of extracellular Ca2+ into cytoplasm seemed to be esential for the stimulatory effect of platelet-derived growth factor and A23187 on hexose transport. Epidermal growth factor and insulin also stimulated hexose transport activity regardless of the absence of protein kinase C. However, in the case of epidermal growth factor, intracellular Ca2+, but not extracellular Ca2+, was found to be necessary for the stimulation. On the other hand, insulin stimulated the hexose transport independent of both intra- and extracellular Ca2+.  相似文献   

18.
The bacteriophage PM2 requires extracellular Ca2+ at concentrations greater than 3 · 10−4 M for the production of viable virus, whereas the host cell Pseudomonas BAL-31 grows normally in medium containing 3 · 10−5 M Ca2+ (low calcium). Virus attachment occurs normally in low calcium, the infected cultures partially lyse, but no infectious virus particles are released. Sucrose gradient analysis shows that lysates made in low calcium contain no PM2-like particles. The addition of calcium very late in the infectious cycle completely restores virus production to cultures infected in low calcium, whereas removal of calcium after infection prevents virus production. Our experiments indicate that Ca2+ is essential for some process late in the lytic cycle, such as the final assembly of stable, infectious PM2 particles.  相似文献   

19.
Cd2+ provokes inositol trisphosphateproduction and releases stored Ca2+, apparently by binding to a zinc site in the external domain of an orphan receptor. One pM Cd2+ evokes an immediate spike in cytosolic free Ca2+, which is similar to that evoked by bradykinin. Platelet-derived growth factor (PDGF) also increases free Ca2+ in human dermalfibroblasts, but there is a distinct lag before free Ca2+ rises in response to PDGF. Genistein, which selectively inhibits tyrosine kinases, markedly inhibited Ca2+ mobilization evoked by PDGF. Calcium mobilization triggered by cadmium or bradykinin was relatively insensitive to genistein. The PDGF receptor is known to be a tyrosine kinase, whichphosphorylates and thereby activatesphospholipase C, whereas a G protein couples the bradykinin receptor to anotherphospholipase C isoform. These findings support the hypothesis that the orphan receptor triggered by cadmium is coupled to phospholipase C via a G protein.Abbreviations BSA bovine serum albumin - BK bradykinin - [Ca2+]i cytosolic free calcium - DME Dulbecco's modified Eagle's medium - FBS fetal bovine serum - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - IC50 concentration that produces 50% inhibition - PDGF platelet-derived growth factor - PSS physiological salts solution - SE standard error of the mean  相似文献   

20.
The polyether antibiotic ionomycin is a common research tool employed to raise cytosolic Ca2+ in almost any cell type. Although initially thought to directly cause physicochemical translocation of extracellular Ca2+ into the cytosol, a number of studies have demonstrated that the mechanism of action is likely to be more complex, involving modulation of intrinsic Ca2+ signaling pathways. In the present study we assessed the effect of ionomycin on primary cultures of murine cerebellar astrocytes. Ionomycin concentrations ranging from 0.1 to 10 μM triggered a biphasic increase in cytosolic Ca2+, consisting of an initial peak and a subsequent sustained plateau. The response was dependent on concentration and exposure time. While the plateau phase was abolished in the absence of extracellular Ca2+, the peak phase persisted. The peak amplitude could be lowered significantly by application of dantrolene, demonstrating involvement of Ca2+-induced Ca2+-release (CICR). The plateau phase was markedly reduced when store-operated Ca2+-entry (SOCE) was blocked with 2-aminoethoxydiphenyl borate. Our results show that ionomycin directly affects internal Ca2+ stores in astrocytes, causing release of Ca2+ into the cytosol, which in turn triggers further depletion of the stores through CICR and subsequently activates SOCE. This mechanistic action of ionomycin is important to keep in mind when employing it as a pharmacological tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号