首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reconstitution of the sugar transport system of human erythrocytes into artificial liposomes was achieved by freezing, thawing, and sonicating preformed phospholipid vesicles in the presence of intact ghosts, protein-depleted ghosts, or detergent-treated ghosts. D-glucose equilibrium exchange activities and affinity constants in the range of the reported erythrocyte values were reached in the best experiments. Whereas the extraction of peripheral membrane proteins did not depress the transport function crucially after reconstituting these protein-depleted ghosts, the selective solubilization of integral membrane proteins by a variety of nonionic detergents resulted in an uncontrollable, continuously increasing inactivation of the carrier. However, Emulphogene BC-720 extracts could be prepared in which the glucose transporter retained activity for days at 4 degrees C. These extracts were applied to affinity chromatography matrices of phloretin-Agarose, prepared by coupling phloretinyl-3'-benzylamine (PBA) to CH-Sepharose 4B and to Affigel 202. Although the solubilized sugar transporter appeared to be selectively adsorbed to both PBA matrices, it could not be eluted by specific counter ligands or gentle eluants in a biologically active form. However, chaotropic agents could be used to elute intrinsic proteins, including bands 3 and 4.5, from the Affigel affinity medium.  相似文献   

2.
3.
4.
Large unilamellar dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) liposomes loaded with an aqueous chemotherapeutic drug, cytosine arabinofuranoside (ARA-C), were exposed for 30 min to 60 W/kg continuous-wave (CW) 100-MHz or 2.45-GHz radiation in vitro at temperatures between 37 degrees C and 43 degrees C. Liposomes were exposed in HEPES buffer or in HEPES buffer supplemented with 44% by volume fetal calf serum (FCS). Characteristic phase transition responses were detected in the range of 39 degrees C to 40 degrees C with the presence of FCS, increasing maximum % release of 3H-ARA-C by 20% relative to HEPES suspension. Neither frequency of electromagnetic radiation had any detectable effect on liposome permeability or the location of the phase transition in the presence or absence of FCS.  相似文献   

5.
A number of substances affect the activity of protein kinase C. Among uncharged and zwitterionic compounds, those which activate protein kinase C also lower the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine while substances which inhibit protein kinase C raise this transition temperature. Using this criteria, we have identified 3-chloro-5-cholestene, 5-cholan-24-ol and eicosane as new protein kinase C activators and have shown that Z-Ser-Leu-NH2, Z-Gly-Leu-NH2, Z-Tyr-Leu-NH2, cyclosporin A and cholestan-3, 5, 6-triol are protein kinase C inhibitors.  相似文献   

6.
All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane‐adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel‐fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large‐scale lipid phase separation and protein segregation in intact, protein‐crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.  相似文献   

7.
Monte Carlo simulations in the grand ensemble and meso-canonical ensemble in which the adsorbent is connected to a finite reservoir have been used to study adsorption isotherms for monolayer argon adsorption on graphite at temperatures below the 2D-critical temperature in order to elucidate the microscopic details of the 2D-transitions: vapour–solid, vapour–liquid and liquid–solid. An S-shaped van der Waals (vdW) loop was found when a small square surface was used; however, for large square surfaces and rectangular surfaces the isotherms exhibit a vdW-type loop with a vertical segment which indicates the coexistence of two phases separated by a boundary that changes its shape with the loading. This coexistence occurs at the same chemical potential as determined by the mid-density scheme, developed by Do and co-workers (Z. Liu, L. Herrera, V.T. Nguyen, D.D. Do, and D. Nicholson, A Monte Carlo scheme based on mid-density in a hysteresis loop to determine equilibrium phase transition. Mol Simul. 37(11):932–939, 2011; Z. Liu, D.D. Do, and D. Nicholson, A thermodynamic study of the mid-density scheme to determine the equilibrium phase transition in cylindrical pores. Mol Simul. 38(3):189–199, 2011).  相似文献   

8.
Summary Injection of small pulses of concentrate solutions of salts or drugs into the outer bathing fluid led to sudden increases of its solute concentration. Vigorous stirring of the outer bathing solution was used to minimize the thickness of the unstirred layer adjacent to the outer skin surface. Pulses of 1m NaCl injected into the outer compartment induced sharp increases of the SCC following a time course variable with the magnitude of the pulse and the particular condition of each skin. Comparison of the spontaneous decline of the SCC with the decline induced by a small dose of amiloride, where an increase inR was observed, indicates that the spontaneous decline cannot be explained simply as a reduction of the Na permeability of the apical membrane by self-inhibition of feedback inhibition of the apical membrane Na channels. Reduction of the driving force for Na movement into the epithelial cells must play an important role in the process. Reversibility of the amiloride inhibition of the SCC was highly dependent upon the ionic strength of the solution used to rinse and wash out the inhibitor from the outer skin surface. With H2O, the amiloride molecules washed out slowly as compared to NaCl or KCl solutions. Na or K have the same ability to dislodge the amiloride molecules from their binding sites. This effect is apparently of a purely electrostatic nature.  相似文献   

9.
Functional interactions of lipids and proteins were examined in brush-border membranes isolated from the kidney cortex by studying the temperature dependence of the hydrolytic enzyme activities. A close relationship was observed for the membrane proteins and the thermotropic lipid phase transitions. Three lines of evidences were provided for such dependence: a) Arrhenius relationship of the membrane-bound enzyme activities, and the effect of temperature in native and partially delipidated membranes, b) differential scanning calorimetric study of the membrane lipid phase transitions in the native and delipidated membranes, multilamellar vesicles prepared from the membrane extracted lipids, and in vesicles from dimyristoyl phosphatidylcholine, and c) the excimer (dimer)-formation studies of the membrane extrinsic fluorescent probe, pyrene, and the resultant membrane microviscosity. The brush-border membranes were partially delipidated with BuOH and 2,2,2-trifluoroethanol. The functional interactions of the delipidated membranes, which were greatly lost on lipid removal, were largely restored by the addition of exogenous lipids in the reconstitution process, which indicate the critical dependence of the membrane integral proteins on the neighboring lipid molecules in the bulk lipid phase.  相似文献   

10.
The enhanced permeability of lipid bilayer membranes at their gel-to-liquid phase transition has been explained using a “bilayer lipid heterogeneity” model, postulating leaky interfacial regions between still solid and melting liquid phases. The addition of lysolipid to dipalmitoylphosphatidylcholine bilayers dramatically enhances the amount of, and speed at which, encapsulated markers or drugs are released at this, already leaky, phase transition through these interfacial regions. To characterize and attempt to determine the mechanism behind lysolipid-generated permeability enhancement, dithionite permeability and doxorubicin release were measured for lysolipid and non-lysolipid, containing membranes. Rapid release of contents from lysolipid-containing membranes appears to occur through lysolipid-stabilized pores rather than a simple enhancement due to increased drug solubility in the bilayer. A dramatic enhancement in the permeability rate constant begins about two degrees below the calorimetric peak of the thermal transition, and extends several degrees past it. The maximum permeability rate constant coincides exactly with this calorimetric peak. Although some lysolipid desorption from liquid state membranes cannot be dismissed, dialyzation above Tm and mass spectrometry analysis indicate lysolipid must, and can, remain in the membrane for the permeability enhancement, presumably as lysolipid stabilized pores in the grain boundary regions of the partially melted solid phase.  相似文献   

11.
Summary As 15% of band 3 protein, the assumed chloride channel, is associated with spectrin, the major peripheral protein of a lattice located at the red cell membrane-cytosol interface, the present study was undertaken to evaluate whether a rearrangement of the lattice modifies the functional property of band 3 protein. Such a rearrangement was modulated by depletion of cell ATP and/or by accumulation of Ca2+ ions within the cell.ATP depletion induces an inhibition of the electroneutral one-for-one chloride exchanges. Neither the modification of red cell morphology due to ATP depletion (discocyte-echinocyte transformation) nor a direct effect of the decrease in internal ATP level can account for this inhibition. On the other hand, it seems reasonable to consider that inhibition is related to the changes in membrane protein organization (formation of heteropolymers) induced by the decrease in ATP level. But it does not appear that the degree of inhibition is modified when this altered assembly of membrane protein is stabilized by disulfide linkages.Accumulation of Ca2+ ions in the cell at a relatively low concentration (10m range) inhibits chloride exchange without apparent modification of the assembly of membrane proteins. This effect of calcium on chloride exchanges is speculatively denoted as a direct effect of calcium.Calcium loading of fresh red cells at higher concentrations (500 to 1000 m) obtained by use of the ionophore A23187 induces a very strong inhibition of chloride exchanges. In this case, inhibition can be reasonably accounted for by two simultaneous effects of calcium: a direct effect which explains half of the inhibition and an indirect effect due to the formation of membrane protein complexes stabilized by covalent crosslinkages (activation by Ca2+ ions of a transglutaminase).It is interesting to note that intracellular calcium, whatever the level, inhibits electroneutral exchanges of chloride but increases net chloride movements.  相似文献   

12.
The fhu operon of Escherichia coli K-12 comprises four genes, termed fhuA,C,D,B, which are involved in the uptake of iron-hydroxamate compounds. The fhuA gene encodes the outer membrane receptor protein. Cells that contained three copies of the fhuACD fragment on the thermoamplifiable plasmid pHK232 accumulated at 37° C large amounts of the proFhuA protein. Most of the overproduced proFhuA protein was not translocated into the outer membrane but instead precipitated at the cytoplasmic side of the inner membrane, presumably at the sites of synthesis. Despite inhibition of export proFhuA synthesis continued.The precipitate formed was sedimented by centrifugation at 8,000xg. The proFhuA protein could be solubilized in 1% sodium dodecyl sulfate. Replacement of sodium dodecyl sulfate by Triton X-100 resulted in a proFhuA protein which exhibited 10% of the phage T5 binding activity of renatured mature FhuA protein. Binding of phage T5 was inhibited by the FhuA-specific ligands ferrichrome, albomycin and colicin M. Limited proteolysis of the isolated pro- and mature form of the FhuA protein with trypsin yielded similar oligopeptide patterns. Addition of ferrichrome affected trypsin cleavage of both proteins in the same way. The common proteolytic intermediates together with phage inactivation indicate a similar conformation of the pro- and mature form.Dedicated to Prof. G. Braunitzer on the occasion of his 60th birthday  相似文献   

13.
In this study, we investigated the role of protein kinase C (PKC) and mitochondrial permeability transition pore (mPTP) on the effect of ceramide in an in vitro model of ischemia in SH-SY5Y neuroblastoma cells. In ischemic cell viability studies, a dual effect of ceramide was observed, depending on ceramide concentration. PKC isoforms are involved in the protective effect of low concentrations of ceramide. During ischemia, ceramide treatment leads to an increase in the formation of reactive oxygen species (ROS), which induces a controlled opening of mPTP. This fact prevents mitochondrial Ca2+ overload, which is clearly protective.  相似文献   

14.
A hybrid gene consisting of the sequences coding for the signal peptide and N terminus of a type-I membrane protein, the neural cell adhesion molecule (N-CAM), and the extracellular domain of the adhesion molecule on glia (AMOG/β2), a type-II membrane protein, was constructed. The sequence was inserted into a eukaryotic expression vector containing the human cytomegalovirus promoter and the glutamine synthetase selection marker, and used to transfect Chinese hamster ovary cells. The resulting stably transformed cell lines produced large amounts of soluble recombinant AMOG/β2 (reAMOG/β2), which was secreted into the culture medium as a heavily glycosylated 40-55-kDa protein. N-terminal sequence analysis revealed that the protein is not cleaved at the natural signal peptide cleavage site of N-CAM, but two amino acids (aa) further downstream. Treatment of reAMOG/β2 with N-glycosidase F (GlycoF) reduced the molecular mass to 27 kDa, corresponding to the calculated mass of the unglycosylated form. In contrast to AMOG/β2 isolated from mouse brain, which is sensitive to endoglycosidase H, the immuno affinity-purified re-protein is more resistant to this treatment, indicating that the sugars attached to reAMOG/β2 are mainly of the complex type. Our results demonstrate the feasibility of secreting the extracellular domain of a type-II membrane protein, which is usually inserted into the membrane with the C terminus facing the extracellular side.  相似文献   

15.
Many gram-negative bacteria produce and excrete siderophores, which complex iron with high affinity in the environment. The ferric siderophore complexes are transported across the outer membrane by receptor proteins. This process requires energy and is TonB dependent and must involve conformational changes in the receptor proteins to allow the transport of the ferric siderophores from the extracellular binding site to the periplasm. There is a large variety in the structures, molecular weights and charges among the siderophores. It was therefore realized that when the sequences of the many different receptor proteins were compared, simultaneously, all identities and close similarities, found in this manner, could only be due to residues involved in the conformational changes and transport mechanism, common to all the proteins, and not be due to the specificity of ligand recognition. Once the crystal structures of FepA, FhuA and FecA became available, it was immediately clear that the sequence similarities which were found in the simultaneous alignment, were all localized in a few structural domains, which are identical in the three structures and can therefore be expected to be maintained in all the proteins in this family. One of these domains, tentatively named the lock region, consists of 10 residues with a central quadrupole formed by two arginines and two glutamates, from the plug region and the beta barrel. We mutated several of these residues in FepA. All showed normal binding in quantitative binding studies. Some showed normal transport as well, however, the majority showed moderate to severe defective transport with ferric enterobactin. The results therefore show the validity of the hypothesis that the simultaneous sequence alignment will select the residues involved in the transport function of the receptor proteins. In addition the results allow to relate the severity of the transport deficiency to be correlated with the structure of the lock region while it is also possible to propose a function of this region in the conformational changes of the protein during the transport of the ligand from the binding site to the periplasm.  相似文献   

16.
Abstract The osmoregulated expression of the porin proteins OmpC and OmpF in S. typhimurium and E. coli is dependent on the regulatory proteins OmpR and EnvZ. The function of the EnvZ protein is not clear. In order to establish the cellular location of EnvZ two different methods of buoyant sucrose density centrifugation was employed. The presence of EnvZ in the different fractions was visualised by immunoblotting. It was conclusively shown that the EnvZ protein is located in the cytoplasmic membrane fraction. The result is in agreement with the available sequence data which shows that the EnvZ polypeptide contains two long hydrophobic stretches.  相似文献   

17.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Strains of enteropathogenic Escherichia coli (EPEC) were examined for a factor, described as an outer membrane protein (OMP) of 32 kilodaltons (kDa) and reported to be involved in the adhesion of EPEC to HeLa cells. A comparable OMP of 35 kDa was detected in strains of EPEC, although expression of this protein was not related to the ability of strains to adhere to HEp-2 cells. The 35 kDa OMP was found to be heat-modifiable and peptidoglycan associated, and considered to be the porin protein OmpF.  相似文献   

19.
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.  相似文献   

20.
Summary The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10–4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10–4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号