首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis has been developed to improve the quantitation of abnormal patterns of tritiated thymidine [(3H]TdR) labelling of colonic epithelial cells, in biopsy specimens removed from human subjects at varying degrees of risk for colon cancer. After pulse incubation of specimens of colonic mucosa with [3H]TdR, each subject's microautoradiographic epithelial cell labelling distribution was segregated into eleven compartments over entire colonic crypts. The findings of each subject were then analysed to determine their relative degree of similarity to the findings for two reference populations of interest, i.e. a high-risk and a low-risk population; the individual was then classified as being closer to one or the other of the reference populations. The analysis developed is based upon a comparison of multinomial probabilities for the distributions of the labelled cells within the crypts, and permits the routine categorization of uneven distributions of labelled cells. For each subject, certain linear scores, a prognostic index based on them, and a related presumptive risk, were calculated. The sensitivity with which individuals known to be symptomatic for polyposis, and the specificity with which individuals known to be at lower risk were determined, were 73 and 93% respectively. The results suggest that this method of distinguishing among integer distributions of [3H]TdR- labelled cells in biopsies of colonic mucosa, may provide a useful basis for identifying individuals with familial polyposis, by separating their labelling patterns from those of low-risk subjects.  相似文献   

2.
Summary The ex vivo labelling of DNA-synthesizing epithelial cells in colonic and vaginal mucosa was compared with in vivo labelling. For this purpose, in vivo S-phase cells were labelled with [3H]thymidine (Tdr) and ex vivo labelling was continued by culturing tissue specimens in bromodeoxyuridine (BrdU). Various methods of tissue culture were employed in order to improve diffusion of medium (and BrdU) in the tissue. BrdU and 3H-TdR labelling were evaluated by immunohistochemistry and autoradiography respectively. Ex vivo labelling resulted in a patchy distribution of labelled cells, which did not correspond with the 3H-TdR labelling pattern obtained in vivo. Under the described conditions ex vivo labelling does not appear to be a reliable for estimation of the proliferative activities in vivo.  相似文献   

3.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

4.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

5.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

6.
The ex vivo labelling of DNA-synthesizing epithelial cells in colonic and vaginal mucosa was compared with in vivo labelling. For this purpose, in vivo S-phase cells were labelled with [3H]thymidine (Tdr) and ex vivo labelling was continued by culturing tissue specimens in bromodeoxyuridine (BrdU). Various methods of tissue culture were employed in order to improve diffusion of medium (and BrdU) in the tissue. BrdU and 3H-TdR labelling were evaluated by immunohistochemistry and autoradiography respectively. Ex vivo labelling resulted in a patchy distribution of labelled cells, which did not correspond with the 3H-TdR labelling pattern obtained in vivo. Under the described conditions ex vivo labelling does not appear to be a reliable for estimation of the proliferative activities in vivo.  相似文献   

7.
Autoradiographic labelling using tritiated thymidine ([3H]TdR) was used to examine the pattern of development of gastric parietal cells in newborn pigs. Specific objectives were to establish sites in the gland where cells with a characteristic parietal cell morphology first appear, the extent of their migration or displacement, and the kinetics of any development and migration that occurs. Five newly-born littermate piglets were given a virtually continuous label of [3H]TdR over 24 hr, sacrificed at 1, 3, 5, 7 and 10 days thereafter, and samples of the gastric mucosa taken. The percentage of labelled parietal cells as a function of position in the oxyntic gland was measured for each pig. A generalized log linear model was fitted to the data using the statistical package GLIM, confirming a significant trend for labelled cells to occupy higher sites in the oxyntic gland as the time since labelling of cells increased. Goodness of fit tests showed that the trend effect was highly unlikely to be due to the variability of cell distribution from animal to animal. The dynamics of the parietal cell population and the strengths of GLIM for analysing cell labelling data are discussed.  相似文献   

8.
ABSTRACT In the Chinese hamster, 17 days, i. e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermato-gonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. the following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i. e. newborn stem cells that still have to migrate away. mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

9.
Regeneration of the uterine luminal epithelium was studied after its mechanical removal in progesterone-primed rats, leaving one control horn intact. Pulse labelling with [3H]TdR during regeneration, showed a rapid peak of labelling index in remaining glands. A differentiated and highly labelled luminal epithelium reappeared at 34 hr, thereafter showing a rapidly declining LI. After initial depletion, the glandular cell population size was restored within 64 hr, whereas luminal epithelium cell numbers became stabilized at about half normal level. Grain counts after prelabelling showed more rapid dilution in gland cells of stripped uterine horns, indicating accelerated cycling of previously dividing cells. Thymidine labelling indices also showed that, after removal of the epithelium, almost all gland cells became rapidly committed to divide. On average, less than two cell cycles were necessary to restore stable glandular and epithelial population sizes. Numbers of labelled cells were also drastically increased in myometrium and serosa of treated horns. This suggests a non-specific mechanism for stimulation of mitotic activity after ablation of epithelium.  相似文献   

10.
Hairless mice were continuously labelled with 10 microCi of tritiated thymidine ([3H]TdR) every 4 h for 8 d, and the proportions of labelled basal and differentiating cells were recorded separately. The mitotic rate was measured by the stathmokinetic method and the cell cycle distributions were measured by flow cytometry of isolated basal cells at intervals during the labelling period. The mitotic rate of the [3H]TdR-injected animals did not deviate from control values during the first 5 d. Computer simulations of the data based on various mathematical models were made, and three main conclusions were obtained: (1) a large spread in transit times through the G1 phase was found, together with a very narrow distribution in maturation time of differentiating cells; (2) about 20% of the differentiating cells were estimated to leave the basal cell layer directly after mitosis. This is consistent with results obtained from different sets of data; and (3) during continuous labelling more than 90% of the cells are labelled during each passage through the S phase.  相似文献   

11.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

12.
Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

13.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

14.
This second part in a two part report describes the kinetic, cell size and nuclear size characteristics of S phase cells and cells with greatly protracted generation times (‘resting’ cells) in a cell line of human lymphoid cells. The median cell and nuclear sizes of S phase cells were greater than the corresponding median sizes observed in the whole population. Resting cells (operationally defined as unlabelled cells after 5 days of continuous labelling with [3H]TdR) have cell and nuclear size distributions overlapping with the cell and nuclear size distributions of the whole population. These resting cells are kinetically characterized by means of the observed labelling index vs time data during continuous labelling. The implication of these results are discussed.  相似文献   

15.
The central zone of the rat lens epithelium, extending half way from the centre to the periphery of a whole mount preparation, normally has less than 1% of the cells in the cell cycle at any given time. Mechanical wounding initiates a burst of proliferation in the central zone. DNA synthesis begins 14 hr after wounding followed by mitosis 10 hr later. When [3H]TdR was applied at 2 hr prior to S phase, some moderately heavy and some light labelling was observed after the onset of S phase. When [3H]TdR was applied 5 hr before S phase (9 hr after wounding), all the cells were lightly labelled. Only small amounts of the label were available to these cells 5 hr after application. It is significant that there was labelling in this group because it indicates the persistence of relatively small intracellular pools of [3H]TdR for several hours after the initial 'pulse' labelling of cells. Determinations of the duration of S phase were based on the assumption that pulse labelling may be affected by the persistence of the pools of [3H]TdR and consequent light labelling of the cells.  相似文献   

16.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

17.
Using radioautographic smear preparations of thymocytes and mesenteric lymph node (MLN) cells labelled with three different tritiated pyrimidine deoxyribonucleosides, the incorporation of DNA precursors was studied separately on large lymphocytes and small lymphocytes. Radioautographic reaction due to generally tritiated deoxycytidine ( [G-3H]CdR) labelling in vivo in large lymphocytes was more intense than that in small lymphocytes. When mice were sacrificed 6 hr after the administration of tritiated thymidine ( [3H]TdR), small lymphocytes were labelled more heavily than large lymphocytes. However, labelling intensity with [3H]TdR in large lymphocytes was greatly enhanced by the administration of 5-fluoro-deoxyuridine, whereas in small lymphocytes labelling intensity was only fairly enhanced by the same treatment. When cells were incubated in vitro with 5-tritium labelled deoxycytidine [( 5-3H]CdR) for 10 min, there was no significant difference in labelling intensities between large and small lymphocytes. In the case of [G-3H]CdR incorporation, the labelling intensity in large lymphocytes was found to be significantly stronger than that in small lymphocytes. Large as well as small lymphocytes incorporated [3H]TdR very well in vitro. However, addition of 5 X 0 X 10(-5) M of non-radioactive CdR to the medium greatly decreased the incorporation of [3H]TdR by large lymphocytes, whereas the effect of non-radioactive CdR in small lymphocytes was not so marked as that in large lymphocytes. Furthermore, the [3H]TdR-labelling percentages were decreased at the same rate by the addition of non-radioactive CdR in both large and small lymphocytes. These results indicate that large lymphocytes and a proportion of small lymphocytes have a strong tendency to convert CdR to thymidine mono-phosphate, which is utilized for DNA synthesis, whereas this ability is relatively weak in the rest of small lymphocytes. Thus, it is probably that this metabolic ability changes during the transition of the large lymphocyte to the small lymphocyte.  相似文献   

18.
Seedlings of Crepis capillaris were irradiated after pulse-labelling with tritiated thymidine ([3H]TdR), and both chromosomal aberrations and presence of silver grains were recorded in the same metaphase cells at various intervals throughout the whole mitotic cycle. The following results were obtained: (a) irradiated roots were homogeneous with respect to the number of aberrations, and heterogenous with respect to labelling index (LI); (b) time-effect curves for labelled (L) and unlabelled (U) cells showed no significant difference from one another; (c) no significant quantitative difference of aberration spectra produced in S and G2 stages was found. These results support the view that the major factor which determines both quantitative and qualitative variation in the production of chromosomal aberrations by radiation is the time lapse between irradiation and fixation rather than relation of the time of irradiation to the time of DNA synthesis. In addition, it was found that labelling with [3H]TdR modifies the effect of radiation on chromosomes.  相似文献   

19.
Abstract. Autoradiographic labelling using tritiated thymidine ([3H]TdR) was used to examine the pattern of development of gastric parietal cells in newborn pigs. Specific objectives were to establish sites in the gland where cells with a characteristic parietal cell morphology first appear, the extent of their migration or displacement, and the kinetics of any development and migration that occurs. Five newly-born littermate piglets were given a virtually continuous label of [3H]TdR over 24 hr, sacrificed at 1, 3, 5, 7 and 10 days thereafter, and samples of the gastric mucosa taken. the percentage of labelled parietal cells as a function of position in the oxyntic gland was measured for each pig. A generalized log linear model was fitted to the data using the statistical package GLIM, confirming a significant trend for labelled cells to occupy higher sites in the oxyntic gland as the time since labelling of cells increased. Goodness of fit tests showed that the trend effect was highly unlikely to be due to the variability of cell distribution from animal to animal. the dynamics of the parietal cell population and the strengths of GLIM for analysing cell labelling data are discussed.  相似文献   

20.
The hydrolysis of phospholipids in vasopressin-stimulated baby hamster kidney (BHK)-21 and H9c2 myoblastic cells was investigated. Phosphatidylcholine and phosphatidylethanolamine in these cells were pulse labelled with [3H]glycerol, [3H]myristate, [3H]choline or [3H]ethanolamine, and chased with the non-labelled precursor until linear turnover rates were obtained. When cells labelled with [3H]glycerol or [3H]myristate were stimulated by vasopressin, no significant decrease in the labelling of phosphatidylcholine was detected, but the labelling of phosphatidic acid was elevated. However, the labellings of phosphatidylethanolamine and its hydrolytic product were not affected by vasopressin stimulation. When the cells were pulse labelled with [3H]-choline, vasopressin stimulation caused a decrease in the labelled phosphatidylcholine with a corresponding increase in the labelled choline. The apparent discrepancy between the two types of labelling might be explained by the recycling of labelled phosphatidic acid back into phosphatidylcholine, thus masking the reduction in the labelled phospholipid during vasopressin stimulation. Alternatively, the labelled choline produced by vasopressin stimulation was released into the medium, thus reducing the recycling of label precursor back into the phospholipid and making the decrease in the labelling of phosphatidylcholine readily detectable. Further studies revealed that vasopressin treatment caused an enhancement of phospholipase D activity in these cells. The presence of substrate-specific phospholipase D isoforms in mammalian tissues led us to postulate that the differential stimulation of phospholipid hydrolysis by vasopressin was caused by the enhancement of a phosphatidylcholine-specific phospholipase D in both BHK-21 and the H9c2 cells.Abbreviations BHK-21 cells baby hamster kidney-21 cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号