首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Stability analysis of multilocation trials is often based on a mixed two-way model. Two stability measures in frequent use are the environmental variance (S i 2 )and the ecovalence (W i). Under the two-way model the rank orders of the expected values of these two statistics are identical for a given set of genotypes. By contrast, empirical rank correlations among these measures are consistently low. This suggests that the two-way mixed model may not be appropriate for describing real data. To check this hypothesis, a Monte Carlo simulation was conducted. It revealed that the low empirical rank correlation amongS i 2 and W i is most likely due to sampling errors. It is concluded that the observed low rank correlation does not invalidate the two-way model. The paper also discusses tests for homogeneity of S i 2 as well as implications of the two-way model for the classification of stability statistics.  相似文献   

2.
Consider the model Yijk=μ + ai + bij + eijk (i=1, 2,…, t; j=1,2,…, Bi; k=1,2…,nij), where μ is a constant and a1,bij and eijk are distributed independently and normally with zero means and variances σ2adij and σ2, respectively, where it is assumed that the di's and dij's are known. In this paper procedures for estimating the variance components (σ2, σ2a and σ2b) and for testing the hypothesis σ2b = 0 and σ2a = 0 are presented. In the last section the mixed model yijk, where xijkkm are known constants and βm's are unknown fixed effects (m = 1, 2,…,p), is transformed to a fixed effect model with equal variances so that least squares theory can be used to draw inferences about the βm's.  相似文献   

3.
This communication consists of a mathematical analysis encompassing the maximization of the average rate of monomer production in a batch reactor performing an enzymatic reaction in a system consisting of a multiplicity of polymeric substrates which compete with one another for the active site of a soluble enzyme, under the assumption that the form of the rate expression is consistent with the Michaelis-Menten mechanism. The general form for the functional dependence of the various substrate concentrations on time is obtained in dimensionless form using matrix terminology; the optimum batch time is found for a simpler situation and the effect of various process and system variables thereon is discussed. The reasoning developed here emphasizes, in a quantitative fashion, the fact that the commonly used lumped substrate approaches lead to nonconservative decisions in industrial practice, and hence should be avoided when searching for trustworthy estimates of optimum operation.List of Symbols O 1/s row vector of zeros - a 1/s row vector of rate constants k i(i = 2,...,N) - A 1/s matrix of rate constants k i and k–i (i=2,...,N) - b 1/s row vector of rate constant k 2 and zeros - C mol/m3 molar concentration of S - C mol/m3 vector of molar concentrations of C i (i=0, 1, 2, ..., N) - C 0 mol/m3 column vector of initial molar concentrations of C i(i=0, 1, 2,.., N) - C –01 mol/m3 column vector of initial molar concentrations of C i(i=2,..., N) - C E, tot mol/m3 total molar concentration of enzyme molecules - C i mol/m3 molar concentration of S i (i=0,1,2,...,N) - C i, o mol/m3 initial molar concentration of S i(i=0, 1, 2, ..., N) - E enzyme molecule - I identity matrix - K 1/s matrix of lumped rate constants - k i 1/s pseudo-first order lumped rate constant associated with the formation of S i -1 (i=1, 2, ...,N) - k cat, i 1/s first order rate constant associated with the formation of S i-1 (i=1, 2, ..., N) - K m mol/m3 Michaelis-Menten constant - L number of distinct eigenvalues - M i multiplicity of the i-th eigenvalue - N maximum number of monomer residues in a single polymeric molecule - r 1 mol/m3 s rate of formation of S 0 - r i mol/m3 s rate of release of S i -1 - r opt maximum average dimensionless rate of production of monomer S0 - S lumped, pseudo substrate - S1 inert moiety - S i substrate containing i monomer residues, each labile to detachment as - S0 by enzymatic action (i=1,2,...,N) - t s time elapsed since startup of batch reaction - t lag s time interval required for cleaning, loading, and unloading the batch reactor - t opt s time interval leading to the maximum average rate of monomer production - v ij s1-j eigenvectors associated with eigenvalue imi (i=1, 2, ..., L; j =1, 2, ..., Mi) Greek Symbols ij mol/m3 arbitrary constant associated with eigenvalue i (i=1, 2, ..., L; j=1, 2, ..., M i ) - 1/s generic eigenvalue - i 1/s i-th eigenvalue  相似文献   

4.
Canran Liu 《植被学杂志》2001,12(3):411-416
Abstract. The behaviour of five statistics (extensions of Pielou's, Clark and Evansapos;, Pollard's, Johnson & Zimmer's, and Eberhardt's statistics, which are denoted as Pi, Ce, Po, Jz and Eb respectively) that involve the distance from a random point to its jth nearest neighbour were examined against several alternative patterns (lattice‐based regular, inhomogeneous random, and Poisson cluster patterns) through Monte Carlo simulation to test their powers to detect patterns. The powers of all the five statistics increase as distance order j increases against inhomogeneous random pattern. They decrease for Pi and Ce and increase for Po, Jz, and Eb against regular and Poisson cluster patterns. Po, Jz, and Eb can reach high powers with the third or higher order distances in most cases. However, Po is recommended because no extra information is needed, it can reach a high power with the second or third distance even though the sample size is not large in most cases, and the test can be performed with an approximate χ2 distribution associated with it. When a regular pattern is expected, Jz is recommended because it is more sensitive to lattice‐based regular pattern than Po and Eb, especially for the first distance. However, simulation tests should be used because the speed of convergence of Jz to normal distribution is very slow.  相似文献   

5.
An investigation was performed into the operation of an integrated system for continuous production and product recovery of solvents (acetone-butanol-ethanol) from the ABE fermentation process. Cells of Clostridium acetobutylicum were immobilized by adsorption onto bonechar, and used in a fluidized bed reactor for continuous solvent production from whey permeate. The reactor effluent was stripped of the solvents using nitrogen gas, and was recycled to the reactor. This relieved product inhibition and allowed further sugar utilization. At a dilution rate of 1.37 h–1 a reactor productivity of 5.1 kg/(m3 · h) was achieved. The solvents in the stripping gas were condensed to give a solution of 53.7 kg/m3. This system has the advantages of relieving product inhibition, and providing a more concentrated solution for recovery by distillation. Residual sugar and non-volatile reaction intermediates are not removed by gas stripping and this contributes to high solvent yields.List of Symbols C kg/m3 Lactose concentration in reactor effluent - C b kg/m3 Lactose concentration in bleed stream - C c kg/m3 Lactose concentration in whey permeate feed - C i kg/m3 Lactose concentration at reactor inlet - C p kg/m3 Lactose concentration in condensed solvent stream (=0) - C r kg/m3 Lactose concentration in recycle line (C b=C r) - C kg/h Amount of lactose utilized during certain time period - D h1 Dilution rate of reactor, F i/D=F/D - F dm3/h, m3/h F i = Rate of feed flow to the reactor - F b dm 3/h, m3/h Rate of bleed - F c dm3/h, m3/h Rate of feed of whey permeate solution - F p dm3/h, m3/h Rate of concentrated product removal - F r dm3/h, m3/h Rate of recycle of stripped effluent to the reactor - P l % Percent lactose utilization - R l kg/(m3 · h) Overall lactose utilization rate - R p kg/(m3 · h) Overall reactor (solvent) productivity - R sl kg/h Rate of solvent loss - S kg/m3 Solvent concentration in reactor effluent - S b kg/m3 Solvent concentration in bleed - S c kg/m3 0; Solvent concentration in concentrated whey permeate solution - S i kg/m3 Solvent concentration at inlet of reactor - S p kg/m3 Solvent concentration in concentrated product stream - S r kg/m3 Solvent concentration in stripped effluent, S r=Sb - S kg/h Amount of solvent produced from C amount of lactose in a particular time - ds/dt kg/(m3 · h) Rate of accumulation of solvents in the stripper - t h Time - V dm3, m3 Total reactor volume - V 1 dm3, m3 Liquid volume in stripper - Y P/S Solvent yield  相似文献   

6.
Some reports indicate that mesophyll conductance (g m) to carbon dioxide varies greatly with the substomatal carbon dioxide concentration (C i) during the measurement, while other reports indicate little or no change in g m with C i. I used the oxygen sensitivity of photosynthesis to determine the response of g m to C i over the range of about 100 to 300 μmol mol−1 C i at constant temperature in common bean (Phaseolus vulgaris) and soybean (Glycine max) grown over a range of temperatures and photosynthetic photon flux densities (PPFD). In soybean grown and measured at high PPFD there was only a slight, approximately 15% decrease in g m with C i over the range of 100 to 300 μmol mol−1. With lower PPFD during the measurement of g m, and especially with low PPFD during plant growth, there was a larger decrease in g m with C i in soybean. In common bean, the same range in C i resulted in about a 60% decrease in g m for plants grown and measured at high PPFD, with an even larger decrease for plants at low growth or measurement PPFD. Growth temperatures of 20 to 30°C had little influence on the response of g m to C i or its absolute value in either species. It is concluded that these two species differed substantially in the sensitivity of g m to C i, and that PPFD but not temperature during leaf development strongly affected the response of g m to C i.  相似文献   

7.
Pulses of blue light cause stimulation of red light saturated photosynthesis in Ectocarpus siliculosus, because blue light activates the operation of a pathway for inorganic carbon (Ci) acquisition by inducing the mobilization of CO2 from an intermediate metabolite. In the absence of exogenous Ci, photosynthetic rates roughly equal those of CO2 release by respiration. In seawater of pH 9·5 (2·3 mol m–3 total Ci, but concentrations of free CO2 below 0·2 mmol m–3), photosynthesis was clearly above these rates, although they were only ≈ 30% of those in normal seawater (≈ pH 8). The degree and the time course of the stimulations of photosynthesis by pulses of blue light were unaltered at high pH. Essentially the same characteristics were found after buffering or in the presence of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity. Therefore, it is concluded that Ectocarpus is able to directly take up HCO3 in addition to CO2 (uptake of CO32– cannot be excluded). The dependence of photosynthesis on Ci at pH 9·5 was biphasic, with Ci below 0·2 mol m–3 having no effect at all. In Ci-free seawater, the shapes of the stimulations after blue light pulses differed for pH 6, pH 8 and pH 9·5. At low pH, only the fast peak (maximum ≈ 5 min after blue light) was detected, whereas at high pH mainly the slow peak (maximum ≈ 20 min after blue light) was observed. At the intermediate pH 8, both peaks were present. As inhibition of total carbonic anhydrase by ethoxyzolamide brought out the fast peak of the stimulations at pH 9·5 it is concluded that the fast component was due to a transient disequilibrium of an intracellular pool of Ci which, after blue light, was fed by CO2 released from the postulated storage intermediate.  相似文献   

8.
Photosynthesis was characterized for the unicellular green alga Coccomyxa sp., grown at low inorganic carbon (Ci) concentrations, and compared with Chlamydomonas reinhardtii, which had been grown so that the CO2 concentrating mechanism (CCM) was expressed, and with protoplasts isolated from the C3 plant barley (Hordeum vulgare). Chlamydomonas had a significantly higher Ci-use efficiency of photosynthesis, with an initial slope of the Ci-response curve of 0.7 mol(gChl)−1 h−1 mmol Cim−3)−1, as compared to 0.3 and 0.23 mol(gChl)−1 h−1 (mmol Cim−3)−1 for Coccomyxa and barley, respectively. The affinity for Ci was also higher in Chlamydomonas, as the half maximum rate of photosynthesis [K0.5 (Ci)] was reached at 0.18 mol m−3, as compared to 0.30 and 0.45 mol m−3 for Coccomyxa and barley, respectively. Ethoxyzolamide (EZ), an inhibitor of the enzyme carbonic anhydrase (CA) and the CCM, caused a 17-fold decrease in the initial slope of the photosynthetic Cj-response curve in Chlamydomonas, but only a 1.5- to two-fold decrease in Coccomyxa and barley. The photosynthetic light-response curve showed further similarities between barley and Coccomyxa. The rate of bending of the curve, described by the convexity parameter, was 0.99 (sharp bending) and 0.81–0.83 (gradual bending) for cells grown under low and high light, respectively. In contrast, the maximum convexity of Chlamydomonas was 0.85. The intrinsically lower convexity of Chlamydomonas is suggested to result from the diversion of electron transport from carbon fixation to the CCM. Taken together, these results suggest that Coccomyxa does not possess a CCM and due to this apparent lack of a CCM, we propose that Coccomyxa is a better cell model system for studying C3 plant photosynthesis than many algae currently used.  相似文献   

9.
Acclimation to rapidly fluctuating light, simulating shallow aquatic habitats, is altered depending on inorganic carbon (Ci) availability. Under steady light of 50 μmol photons·m?2·s?1, the growth rate of Synechococcus elongatus PCC7942 was similar in cells grown in high Ci (4 mM) and low Ci (0.02 mM), with induced carbon concentrating mechanisms compensating for low Ci. Growth under fluctuating light of a 1‐s period averaging 50 μmol photons·m?2·s?1 caused a drop in growth rate of 28%±6% in high Ci cells and 38%±8% in low Ci cells. In high Ci cells under fluctuating light, the PSI/PSII ratio increased, the PSII absorption cross‐section decreased, and the PSII turnover rate increased in a pattern similar to high‐light acclimation. In low Ci cells under fluctuating light, the PSI/PSII ratio decreased, the PSII absorption cross‐section decreased, and the PSII turnover remained slow. Electron transport rate was similar in high and low Ci cells but in both was lower under fluctuating than under steady light. After acclimation to a 1‐s period fluctuating light, electron transport rate decreased under steady or long‐period fluctuating light. We hypothesize that high Ci cells acclimated to exploit the bright phases of the fluctuating light, whereas low Ci cells enlarged their PSII pool to integrate the fluctuating light and dampen the variation of the electron flux into a rate‐restricted Ci pool. Light response curves measured under steady light, widely used to predict photosynthetic rates, do not properly predict photosynthetic rates achieved under fluctuating light, and exploitation of fluctuating light is altered by Ci status.  相似文献   

10.
Studies with the variable J method have reported that mesophyll conductance (gm) rapidly decreases with increasing intercellular CO2 partial pressures (Ci) or decreasing irradiance. Similar responses have been suggested with the online isotope discrimination method, although with less consistency. Here we show that even when the true gm is constant, the variable J method can produce an artefactual dependence of gm on Ci or irradiance similar to those reported in previous studies for any of the following factors: day respiration and chloroplastic CO2 photocompensation point are estimated with Laisk method; Ci or electron transport rate is positively biased; net photosynthetic rate is negatively biased; insufficient NADPH is assumed while insufficient ATP limits RuBP regeneration. The isotopic method produces similar artefacts if fractionation of carboxylation or Ci is positively biased or Δ13 negatively biased. A non‐zero chloroplastic resistance to CO2 movement results in a qualitatively different dependence of gm on Ci or irradiance and this dependence is only sensitive at low Ci. We thus cannot rule out the possibility that previously reported dependence of gm on Ci or irradiance is a methodological artefact. Recommendations are made to take advantage of sensitivities of the variable J and isotopic methods for estimating gm.  相似文献   

11.
The balance equations for substrate in a cascade of CSTR's undergoing an enzyme-catalyzed reaction following Michaelis-Menten kinetics are developed in dimensionless form. Analytical expressions relating the intermediate concentrations are independently obtained for the cases of minimum overall volume and constant volume. The fractional deviations between the overall volumes following these two design criteria are calculated and presented for several values of the relevant parameters. For situations of practical interest, the fractional deviation is below 10%. Increasing values of the Michaelis-Menten parameter, K m(or decreasing values of the number of reactors in the cascade, N) lead to lower values of the maximum deviation; this maximum deviation is attained at lower conversions of substrate when K mis increased or N decreased.List of Symbols C S, imol.m–3 concentration of substrate at the outlet of the i-th reactor - C * S, i normalized concentration of substrate at the outlet of the i-th reactor - C * S, i, eq normalized concentration of substrate at the outlet of the i-th reactor using the design criterion of constant volume - C * S, i, opt normalized concentration of substrate at the outlet of the i-th reactor using the design criterion of minimum overall volume - C S, 0 mol.m–3 concentration of substrate at the inlet to the first reactor - Da i Damköhler number for the i-th reactor - Da eq constant Damköhler number for each reactor of the cascade - Da tot, eq overall Damköhler number for the cascade assuming equal-sized reactors - Da tot, min minimum overall Damköhler number for the cascade - Er fractional deviation between the overall volumes using the two different design criteria - K mmol. m–3 Michaelis-Menten constant - K * M dimensionless Michaelis-Menten constant - N number of reactors of the cascade - Q m3. s–1 volumetric flow rate - V im3 volume of the i-th reactor - v max mol. m–3. s–1 reaction rate under saturation conditions of the enzyme with substrate - V tot, opt m3 minimum overall volume of the cascade - V tot, eq m3 overall volume of the cascade assuming equal-sized reactors  相似文献   

12.
Consider the model yijk=u ± ai ± bi ± cij ± eijk i=1, 2,…, t; j=1, 2,…b; k=1, 2,…,nij where μ is a constant and ai, bi, cij are distributed independently and normally with zero means and variances Δ2 Δ2/bdij and δ2 respectively. It is assumed that di's, and dij's are known (positive) constants (for all i and j). In this paper procedures for estimating the variance components (Δ2, Δ2b and Δ2a) and for testing the hypothesis Hoc2c2 = y3 and Hoa2b2 = y4 (where y2, y3, and y4, are specified constants) are presented. A generalization for the mixed model case is discussed in the last section.  相似文献   

13.
The balance equations pertaining to the modelling of a slap-shaped bead containing immobilized enzyme uniformly distributed which catalyzes the sequential reactions of degradation of a polymeric substrate were written and analytically solved in dimensionless form. The effect of the Thiele modulus on the selectivity of consumption of each multimeric product was studied for a simple case. Whereas plain diffusional regime leads to lower selectivities than plain kinetic regime, improvements in selectivity of species A i relative to species Ai+1 may be obtained at the expense of higher Thiele moduli within a limited range when the diffusivity of A i is larger than that of A i +1, or when the pseudo first order kinetic constant describing the rate of consumption of A i is lower than that of Ai+1.List of Symbols A i polymeric substrate containing i monomeric subunits - C i mol·m–3 normalized counterpart of C i - C i mol·m–3 concentration of substrate A i - C i,0 mol·m–3 initial concentration of substrate A i - C i,0 normalized counterpart of C i,0 - D ap,i m2·s–1 apparent diffusivity of substrate A i - k i s–1 pseudo-first order rate constant - K m,i mol·m–3 Michaelis-Menten constant associated with substrate A i - L m half-thickness of the catalyst slab - N number of monomeric subunits of the largest substrate molecule - Th Thiele modulus - V i mol·m–3·s–1 rate of rection of substrate A i - Vmax,i mol·m–3·s–1 maximum rate of reaction under saturating conditions of substrate A i - x m longitudinal coordinate - S i,i+1 selectivity of enzyme with respect to substrates with consecutive numbers of monomeric subunits Greek Symbols i ratio of maximum rates of reaction - i ratio of apparent diffusivities  相似文献   

14.
We describe the characteristics of a sampling procedure called random median sampling that was proposed to enhance the precision of population estimates. In performing random median sampling, we first select a sampling item at random from the sampling area. We roughly compare the abundance of individuals in the selected item with that of the adjacent two items in order to identify the item that has median abundance, i.e., the item that has the second largest abundance among the three items. We count the number of individuals of the item having the median abundance. This procedure is repeated n times in the sampling area (i = 1, 2, ..., n). Let m i be the ith median abundance. The estimates of the mean abundance per sampling item and the variance of estimates are given by Σm i /n and Σ(m i –Σm i /n)2/n(n – 1), respectively. This method is a local application of the median ranked set sampling that was proposed by Muttlak (J Appl Stat Sci 6:245–255, 1997). Random median sampling is effective when the correlation coefficient between adjacent items is small. If the correlation coefficient is close to zero, random median sampling reduces the variance of estimates to 45 or 32% of that in simple random sampling when the distribution follows a normal distribution or a Laplace distribution, respectively. The sample size required to achieve a given precision of estimate decreases accordingly. The effectiveness of random median sampling, however, is small if the correlation coefficient is large. The condition in which random median sampling is superior to simple random sampling is also discussed.  相似文献   

15.
A model is proposed for the d-galactoside-H+(OH) transporter of Escherichia coli that accounts for essentially all the experimental observations established for this system to date. In this model, the functional unit is postulated to be a dimer (consisting of two copies of lacY-specified polypeptide) which spans the membrane with a 2-fold symmetry axis in the membrane plane (Lancaster, J.R. (1978) J. Theor. Biol. 75, 35–50). The functional dimer is assumed to possess a single pore flanked by an inner gate (gi) and an outer gate (go) and encompassing two oppositely oriented galactoside binding sites, designated m and μ. When go is open and gi is closed under non-energized conditions, binding site m adopts a configuration defined as State A (i.e., moA) exhibiting high affinity toward Class Ga galactosides (thiodigalactoside, melibiose, α-p-nitrophenylgalactoside) but low affinity for Class Gb galactosides (lactose, β-o-nitrophenylgalactoside, β-isopropylthiogalactoside), whereas binding site μ adopts State B (i.e., μoB) displaying relatively high affinity toward Class Gb galactosides but comparatively low affinity for Class Ga galactosides; further, each moA : μoB dimer contains one thiol group whose reaction with N-ethylmaleimide inactivates the transporter unless blocked by galactoside binding at site moA, while the second homologous thiol of the dimer is unreactive toward thiol reagents. Translocation of the moA : μoB dimer involves closing of go followed by opening of gi, and causes the two thiols (as well as sites m and μ) to interchange roles in a symmetrical fashion: moA : μoB ↔ miB : μiA. In the presence of a substantial (negative) transmembrane Δμ~H+, the m : μ dimer is postulated to undergo an electrogenic protein conformational change to a second form, *(m : μ), in which both sites m and μ possess low affinity toward internal Class Gb substrates; galactoside transport in both m : μ and *(m : μ) is assumed to be coupled to H+-symport (OH-antiport) with a stoichiometry of approximately 1 : 1. Finally, five characteristic predictions of the half-sites model are outlined for further tests of its validity.  相似文献   

16.
A necessary condition is found for the intermediate temperatures and substrate concentrations in a series of CSTR's performing an enzyme-catalyzed reaction which leads to the minimum overall volume of the cascade for given initial and final temperatures and substrate concentrations. The reaction is assumed to occur in a single phase under steady state conditions. The common case of Michaelis-Menten kinetics coupled with first order deactivation of the enzyme is considered. This analysis shows that intermediate stream temperatures play as important a role as intermediate substrate concentrations when optimizing in the presence of nonisothermal conditions. The general procedure is applied to a practical example involving a series of two reactors with reasonable values for the relevant five operating parameters. These parameters are defined as dimensionless ratios involving activation energies (or enthalpy changes of reaction), preexponential factors, and initial temperature and substrate concentration. For negligible rate of deactivation, the qptimality condition corresponds to having the ratio of any two consecutive concentrations as a single-parameter increasing function of the previous ratio of consecutive concentrations.List of Symbols C E,0 mol.m–3 Initial concentration of active enzyme - C E,i mol.m–3 Concentration of active enzyme at the outlet of the i-th reactor - C S,0 mol.m–3 Initial concentration of substrate - C S,i mol.m–3 Concentration of substrate at the outlet of the i-th reactor - Da i Damköhler number associated with the i-th reactor ((V i.kv,0.CE,0)/(Q.CS,0)) - Da min Minimum value of the overall Damköhler number - Da tot Overall Damköhler number - E d J.mol–1 Activation energy of the step of deactivation of the enzyme - E m J.mol–1 Standard enthalpy change of the step of binding of substrate to the enzyme - E v J.mol–1 Activation energy of the step of enzymatic transformation of substrate - i Integer variable - j Dummy integer variable - k Dummy integer variable - k d,i s–1 Kinetic constant associated with the deactivation of enzyme in the i-th reactor (k d,o·exp{–E d/(R.T i}) - k d,0 s–1 Preexponential factor of the kinetic constant associated with the deactivation of the enzyme - K m,i mol.m–3 Equilibrium constant associated with the binding of substrate to the enzyme in the i-th reactor, (k m,o·exp{–E m}(R.T i}) - K m,0 mol.m–3 Preexponential factor of the Michaelis-Menten constant associated with the binding of substrate to the enzyme - k v,i s–1 Kinetic constant associated with the transformation of the substrate by the enzyme in the i-th reactor (k v,o·exp{–E v/(R.T i})) - k v,0 s–1 Preexponential factor of the kinetic constant associated with the transformation of the substrate by the enzyme - N Number of reactors in the series - Q m3.s–1 Volumetric flow rate of reacting liquid through the reactor network - R J.K–1.mol–1 Ideal gas constant - T i K Absolute temperature at the outlet of the i-th reactor - T 0 K Initial absolute temperature - V i m3 Volume of the i-th reactor - v max mol.m–3.s–1 Maximum rate of reaction under saturation conditions of substrate - x i Normalized concentration of substrate (CS,i/CS, 0) - x i,opt Optimum value of the normalized concentration of substrate - y i Dimensionless temperature (exp{–T 0/T i}) - y i,opt Optimum value of the dimensionless temperature Greek Symbols Dimensionless preexponential factor associated with the Michaelis-Menten constant (K m,0/Cs,0) - Dimensionless activation energy of the step of enzymatic transformation of substrate (E v/R.T0)) - Dimensionless standard enthalpy change of the step of binding of substrate to the enzyme (E m/(R.T0)) - Dimensionless activation energy of the step of deactivation of the enzyme (E d/(R.T0)) - Dimensionless deactivation preexponential factor ((k d,0.CS,0)/(kv,0.CE,0)  相似文献   

17.
The capacity for HCO3 use by Porphyra leucosticta Thur. in Le Jolis grown at different concentrations of inorganic carbon (Ci) was investigated. The use of HCO3 at alkaline pH by P. leucosticta was␣demonstrated by comparing the O2 evolution rates measured with the O2 evolution rates theoretically supported by the CO2 spontaneously formed from HCO3 . Both external and internal carbonic anhydrase (CA; EC 4.2.1.1) were implied in HCO3 use during photosynthesis because O2 evolution rates and the increasing pH during photosynthesis were inhibited in the presence of azetazolamide and ethoxyzolamide (inhibitors for external and total CA respectively). Both external and internal CA were regulated by the Ci level at which the algae were grown. A high Ci level produced a reduction in total CA activity and a low Ci level produced an increase in total CA activity. In contrast, external CA was increased at low Ci although it was not affected at high Ci . Parallel to the reduction in total CA activity at high Ci is a reduction in the affinity for Ci, as estimated from photosynthesis versus Ci curves, was found. However, there was no evident relationship between external CA activity and the capacity for HCO3 use because the presence of external CA became redundant when P. leucosticta was cultivated at high Ci. Our results suggest that the system for HCO3 use in P. leucosticta is composed of different elements that can be activated or inactivated separately. Two complementary hypotheses are postulated: (i) internal CA is an absolute requirement for a functioning Ci-accumulation mechanism; (ii) there is a CO2 transporter that works in association with external CA. Received: 20 April 1996 / Accepted: 5 August 1996  相似文献   

18.
The effect of blue and red light on the adaptation to low CO2 conditions was studied in high-CO2 grown cultures of Chlorella Pyrenoidosa (82T) and Chlamydomonas reinhardtii(137+) by measuring O2 exchange under various inorganic carbon (Ci) concentrations. At equal photosynthetic photon flux density (PPFD), blue light was more favourable for adaptation in both species, compared to red light. The difference in photosynthetic oxygen evolution between cells adapted to low Ciunder blue and red light was more pronounced when oxygen evolution was measured under low Ci compared to high Ci conditions. The effect of light quality on adaptation remained for several hours. The different effects caused by blue and red light was observed in C. pyrenoidosa over a wide range of PPFD with increasing differences at increasing PPFD. The maximal difference was obtained at a PPFD above 1 500 μmol m?2s?1. We found no difference in the extracellular carbonic anhydrase activity between blue- and red light adapted cells. The light quality effect recorded under Ci-limiting conditions in C. reinhardtii cells adapted to air, was only 37% less when instead of pure blue light red light containing 12.5% of blue light (similar PPFD as blue light) was used during adaptation to low carbon. This indicates that in addition to affecting photosynthesis, blue light affected a sensory system involved in algal adaptation to low Ci conditions. Since the affinity for Ci of C. Pyrenoidosa and C. reinhardtii cells adapted to air under blue light was higher than that of cells adapted under red light, we suggest that induction of some component(s) of the Ci accumulating mechanism is regulated by the light quality.  相似文献   

19.
The reversible hydrolysis of maltose to glucose by immobilized glucoamylase entrapped in spherical solid particles is studied theoretically. For this purpose a known kinetic model taking into account these reversible reactions and the competitive synthesis of iso-maltose was adopted. The mass transfer limitations in the bulk liquid and in the pores of the particles containing the enzyme are considered, using Fick's law. On the basis of mathematical modelling the optimum conditions for biocatalyst performance are established. An appropriate combination of particle size and initial substrate concentration may lead to reduction of undesirable mass transfer resistance and therefore product inhibition and to an improved selectivity of the biocatalyst with respect of glucose formation.List of Symbols C i kmoles/m3 current concentration ofi-th component along the radius - C oi kmoles/m3 bulk concentration ofi-th component - C i * kmoles/m3 concentrations ofi-th component on the pellet surface - D si ,D i m2/s internal and molecular diffusion coefficient ofi-th component - W M kmoles/m3·s reaction rate of maltose hydrolysis - W IM kmoles/m3·s reaction rate of iso-maltose formation - W G kmoles/m3·s reaction rate of glucose production - R 0 m pellet radius - r m current radius of the pellet - t s time coordinate - r 0 ratio of the time step to the square of the radial coordinate - Re Reynolds number =w·R/v - Sc Schmidt number =v/D - Bi Biot number = R/D - A j ,B, C j coefficients in the system of linear equations, Eq. (8) - X i dimensionless degree of transformation - NR number of independent reactions - N number of division sections of the pellet radius - G kmoles/m3 concentration of glucose - M kmoles/m3 concentration of maltose - IM kmoles/m3 concentration of isomaltose - K m kmoles/m3 Michaelis constant - V max kmoles/m3·s maximum reaction rate in Eq. (6) - K i kmoles/m3 inhibition constant - K 1eq ,K 2eq equilibrium constants in Eq. (6) - , h steps along the time and radial coordinate in the pellet - m/s mass transfer coefficient - dimensionless radius of the pellet - computation accuracy Indices i number of reaction component - j index along the radius of the pellet - k index along the time coordinate This work was accomplished with thanks to the financial support of the Bulgarian National Fund for Scientific Investigations —Grant No. MU-1-BE/93.  相似文献   

20.
A necessary condition is found for the optimum temperature policy which leads to the minimum reaction time for a given final conversion of substrate in a well stirred, enzymatic batch reactor performing an enzyme-catalyzed reaction following Michaelis-Menten kinetics in the presence of first order enzyme decay. The reasoning, which is based on Euler's classical approach to variational calculus, is relevant for the predesign steps because it indicates in a simple fashion which temperature program should be followed in order to obtain the maximum advantage of existing enzyme using the type of reactor usually elected by technologists in the fine biochemistry field. In order to highlight the relevance and applicability of the work reported here, the case of optimality under isothermal operating conditions is considered and a practical example is worked out.List of Symbols C E mol.m–3 concentration of active enzyme - C E * dimensionless counterpart of CE - C E,0 mol.m–3 initial concentration of active enzyme - C E,b mol.m–3 final concentration of active enzyme - C E,opt * optimal dimensionless counterpart of CE - C smol.m–3 concentration of substrate - C S Emphasis>/* dimensionless counterpart of CS - C S,0mol.m–3 initial concentration of substrate - C S,bmol.m–3 final concentration of substrate - E enzyme in active form - E 3 * dimensionless counterpart of Ea,3 - E a,1J.mol–1 activation energy associated with k1 - E a,3J.mol–1 activation energy associated with k3 - E d enzyme in deactivated form - ES enzyme/substrate complex - k 1 s–1 kinetic constant associated with the enzyme-catalyzed transformation of substrate - k 1,0 s–1 preexponential factor associated with k1 - k 2 mol–1.m3s–1 kinetic constant associated with the binding of substrate to the enzyme - k –2 s–1 kinetic constant associated with the dissociation of the enzyme/substrate complex - K 2,0 mol.m–3 constant value of K2 - K 2,0 * dimensionless counterpart of K2,0 - k 3 s–1 kinetic constant associated with the deactivation of enzyme - k 3,0 s–1 preexponential factor associated with k3 - k 3,0 * dimensionless counterpart of k3,0 - P product - R J.K–1.mol–1 ideal gas constant - S substrate - t s time since start-up of reaction - T K absolute temperature - T * dimensionless absolute temperature - T i,opt * optimal dimensionless isothermal temperature of operation - T opt * optimal dimensionless temperature of operation - t b s time of a batch - t b * dimensionless counterpart of tb - t b,min * minimum value of the dimensionless counterpart of tb Greek Symbols dimensionless counterpart of CE,0 - dimensionless counterpart of CE,b - dummmy variable of integration - dummy variable of integration - auxiliary dimensionless variable - * dimensionless variation of k1 with temperature - i * dimensionless value of k1 under isothermal conditions - opt * optimal dimensionless variation of k1 with temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号