首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding microstructural changes that occur in skin subjected to repetitive mechanical stress is crucial towards the development of therapies to enhance skin adaptation and load tolerance in patients at risk of skin breakdown (e.g. prosthesis users, wheelchair users). To determine if collagen fibril diameter, collagen fibril density, dermal thickness, epidermal thickness, basement membrane length, and dermal cell density changed in response to repetitive stress application, skin subjected to moderate cyclic compressive and shear stresses for 1 h/d, 5 d/week, for 4 week was compared with skin from an unstressed contralateral control. The lateral aspects of the hind limbs of 12 Landrace/Yorkshire pigs were used. Skin from under the stressed site and a contralateral control site was processed for electron microscopy and light microscopy analysis. Electron microscopy results demonstrated significant (p<0.01) increases in collagen fibril diameter of 15.9%, 22.4%, and 22.9% for the upper, mid, and lower layers of the dermis, respectively, for the stressed skin compared with the control skin. Collagen fibril density (fibrils/unit cross-sectional area) decreased significantly for stressed vs. control by 19.8%, 29.2%, and 31.8% for the upper, mid, and lower layers, respectively. Light microscopy results demonstrated trends of a decrease in dermal thickness and an increase in cell density for stressed vs. control samples, but the differences were not significant. Differences in epidermal thickness and basement membrane length were not significant. These results demonstrate that quantifiable changes occur in collagen fibril architecture but not in the gross tissue morphology following in vivo cyclic loading of pig skin.  相似文献   

2.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

3.
The purpose of this study was to find out whether the microstructure of the highly permeable skin of heat-acclimated pigeons allowing increased evaporative cooling differs from the skin of pigeons in the non-acclimated or cold-acclimated state. In addition, the correlation between epidermal morphology and cutaneous water evaporation in heat-acclimated pigeons was elucidated. The epidermis of heat-acclimated pigeons differs in several respects from the epidermis of non-acclimated or cold-acclimated birds. Both the dorsal and the abdominal skin include modified areas, characterized by increased vascularization, epidermis with greater thickness, and changes in intracellular structures. Greater thickness results from hypertrophy of epidermal cells possibly due to greater fluid content of the sebokeratinocytes in the germinative layers. The stratum corneum includes corneocytes with thickened cornified envelopes and contains greater mass of keratin-complex material compared to non-acclimated and cold-acclimated pigeons. The extracellular space between the compactly piled corneocytes contains amorphous lipoid material. The multigranular bodies lack compact organization of lipid bilayers. The transitional layer in the heat-acclimated pigeon displays atypical keratohyalin granules, which are multilateral and dendritic in shape. It is concluded that the dorsal and abdominal skin of heat-acclimated pigeons contains areas that differ in structure from their counterparts in non-acclimated and cold-acclimated pigeons. The structural characteristics of these modified patches suggest a high rate of cutaneous evaporation and decreased skin resistance to transepidermal diffusion of water vapor. Thus, the skin of a heat-acclimated pigeon responds to the thermoregulatory requirements for increased cutaneous water evaporation by structural changes. J. Morphol. 235:17–29, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Abstract

Ultraviolet (UV) rays cause skin damage. Chronic exposure to UV irradiation causes decreased collagen synthesis, degenerative changes in collagen bundles, accumulation of elastotic material and increased epidermal thickness. Origanum hypericifolium, an endemic Turkish plant, belongs to Lamiaceae family. The main constituents of its oil are monoterpenes including cymene, carvacrol, thymol and γ-terpinene. The effects of undiluted O. hypericifolium oil on UVB irradiated skin of mice were investigated histochemically. Four groups of female BALB/c mice, whose dorsal hair was shaved, were allocated as follows: non-UVB irradiated (Group 1), UVB-irradiated (Group 2), O. hypericifolium oil treated (Group 3), and O. hypericifolium oil treated and UVB irradiated (Group 4). Sections of dorsal skin samples were stained with Mallory's phosphotungstic acid hematoxylin for collagen fibers and Taenzer-Unna orcein for elastic fibers. Sections also were stained with hematoxylin and eosin to measure epidermal thickness. We observed intense staining of collagen and homogeneous, scattered thin elastic fibers in Group 1; scattered and weakly stained collagen and curled, amorphous, accumulate elastic fibers in Group 2; and intense staining of collagen in Groups 3 and 4. Accumulation of elastic fibers in the dermis was unremarkable in Groups 3 and 4. In Groups 3 and 4, O. hypericifolium oil treatment thickened the epidermis. Epidermal thickness was greatest in Group 4. We suggest that O. hypericifolium oil may block UVB induced alterations of collagen and elastic fibers, and increase epidermal thickness.  相似文献   

5.
Xenobalanus globicipitis, a unique type of small pseudo‐stalked barnacle occurs on the appendages of cetaceans, including the common bottlenose dolphin Tursiops truncatus. In this study, we examined attachment structures of X. globicipitis and modifications to the skin of T. truncatus in areas of attachment compared to skin nearby an attachment site. Barnacles and their six calcareous footplates were measured for their length and width. There was a positive correlation of barnacle width and length to footplate width and length. The thickness of the stratum corneum increased significantly in areas of attachment compared to skin nearby a footplate. The mitotic stratum germinativum at the base of the dermal papillae did not change significantly in areas of attachment compared to skin nearby a footplate. The stratum germinativum lining the lateral walls of the dermal papillae was significantly thicker in areas of skin nearby a footplate compared to in areas of attachment. Skin of T. truncatus nearby a footplate, displayed dermal papillae extending from the dermis and pointing roughly perpendicular to the epidermal stratum corneum. At sites of X. globicipitis attachment, the dermal papillae were forced to extend laterally, parallel to the stratum corneum, and the dermal papillae length to width ratio at an attachment site was significantly higher than on skin near an attachment site. Our results show that attachment of X. globicipitis through production of footplates organized into calcareous rings, leads to a thickened stratum corneum of the epidermis, a thinner lateral mitotic stratum germinativum and displaced structures of the upper dermis. These resulting modifications to the epidermis and dermis of the host may add to securing barnacle attachment to its host. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
松江鲈鱼皮肤的显微和亚显微结构   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电镜和透射电镜,对松江鲈鱼(Trachidermus fasciatus)成体皮肤的显微和亚显微结构进行了观察。结果表明,松江鲈鱼体表不同部位皮肤的厚薄不一,但基本结构相似。皮肤由表皮和真皮层构成。松江鲈鱼的皮肤裸露无鳞,表皮层较薄,由约4~8层细胞构成,主要由复层上皮细胞和黏液细胞及基底细胞组成。表层细胞呈扁平、多边形,细胞之间主要靠桥粒紧密连接,连接处形成增厚的边缘嵴状突起。表皮细胞游离面向内凹陷,表面形成指纹状微嵴。黏液细胞呈圆形或卵圆形,散布在上皮细胞之间。黏液细胞内的黏原颗粒具有椭圆颗粒状、均匀致密的块状和疏松丝状3种不同形态。真皮通过基膜与表皮相连,由稀疏层和致密层构成。真皮结缔组织在腹部较厚而在其他部位较薄。表皮与真皮连接处有色素层,头部、背部、尾柄和体侧皮肤色素细胞分布多,色素层明显,而腹部和颏部皮肤缺少色素。松江鲈鱼黄河群体真皮层中有角质棘状突起,而滦河群体则无。头部、体侧和尾柄处皮肤上还分布有侧线孔和表面神经丘等感觉器官。  相似文献   

7.
The present study shows the localization of epidermal and dermal proteins produced in lizard skin cultivated in vitro. Cells from the skin have been cultured for up to one month to detect the expression of keratins, actin, vimentin and extracellular matrix proteins (fibronectin, chondroitin sulphate proteoglycan, elastin and collagen I). Keratinocytes and dermal cells weakly immunoreact for Pan-Cytokeratin but not with the K17-antibody at the beginning of the cell culture when numerous keratin bundles are present in keratinocyte cytoplasm. The dense keratin network disappears after 7-12 days in culture, and K17 becomes detectable in both keratinocytes and mesenchymal cells isolated from the dermis. While most epidermal cells are lost after 2 weeks of in vitro cultivation dermal cells proliferate and form a pellicle of variable thickness made of 3-8 cell layers. The fibroblasts of this dermal equivalent produces an extracellular matrix containing chondroitin sulphate proteoglycan, collagen I, elastic fibers and fibronectin, explaining the attachment of the pellicle to the substratum. The study indicates that after improving keratinocyte survival a skin equivalent for lizard epidermis would be feasible as a useful tool to analyze the influence of the dermis on the process of epidermal differentiation and the control of the shedding cycle in squamates.  相似文献   

8.
Human skin contains epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) that are key players in induction of adaptive immunity upon infection. After major burn injury, suppressed adaptive immunity has been observed in patients. Here we demonstrate that burn injury affects adaptive immunity by altering both epidermal LC and dermal DC functions. We developed a human ex vivo burn injury model to study the function of DCs in thermally injured skin. No differences were observed in the capacity of both LCs and dermal DCs to migrate out of burned skin compared to unburned skin. Similarly, expression levels of co-stimulatory molecules were unaltered. Notably, we observed a strong reduction of T cell activation induced by antigen presenting cell (APC) subsets that migrated from burned skin through soluble burn factors. Further analyses demonstrated that both epidermal LCs and dermal DCs have a decreased T cell stimulatory capacity after burn injury. Restoring the T cell stimulatory capacity of DC subsets might improve tissue regeneration in patients with burn wounds.  相似文献   

9.
Alibardi L. 2011. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. —Acta Zoologica (Stockholm) 92 : 187–200. The present morphological study describes the color of hatchling, juvenile, and adult crocodilian skin and the origin of its pigmentation. In situ hybridization and immunostaining indicate that crocodilian scales grow as an expansion of the proliferating epidermis of the hinge region that form thin lateral rings. In more central areas of growing scales, new epidermal layers contribute to increase the thickness of the stratum corneum. The dark pigmentation and color pattern derive from the different distribution of epidermal and dermal chromatophores. The more intensely pigmented stripes, irregular patches and dot‐like spots, especially numerous in dorsal scales, derive from the incorporation of the eumelanosomes of epidermal melanocytes in differentiating beta cells of the epidermis. Dermal melanophores, mainly localized in the loose upper part of the dermis, also contribute to the formation of the dark or gray background of crocodilian scales. The eumelanosomes of dermal melanophores determine the darkening of the skin pattern in association with the epidermal melanocytes. Iridophores are infrequent, while xantophores are present in the species analyzed with a sparse distribution in the superficial dermis among melanophores. The presence of xantophores and of the few iridophores in areas where epidermal melanocytes are absent appear to determine the brown or the light yellow‐orange background observed among the darker regions of crocodilian scales.  相似文献   

10.
Parker JD  Caudill CC  Hay ME 《Oecologia》2007,151(4):616-625
Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard’s tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard’s tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard’s tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard’s tail leaves within 2 weeks. In contrast, leaf abundance increased by 73–93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard’s tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and communities of herbaceous aquatic plants and extends the consequences of beaver activities beyond ecosystem engineering.  相似文献   

11.
Langerhans cells (LCs) seem to play a crucial role in the immune system of the skin. Changes in their density, distribution, phenotype and/or morphology have been described in a number of skin diseases, mostly immunologically mediated. For this reason, we investigated LCs in human hypertrophic scars, since these scars are presently believed to have an immunological basis. A preliminary analysis of the histological features was carried out on vertical serial sections, stained with hematoxylin and eosin. Both epidermal and dermal components of hypertrophic scar biopsies were examined. The total epidermal thickness and the thickness of the single epidermal layers were also measured; the values obtained were similar to those of control skin and normotrophic scars. Subsequently, CDla-positive LCs, revealed by indirect immunofluorescence and immunoperoxidase techniques, were studied to determine their position among the epidermal layers and within the dermis, their dimensions, their density and their morphology. According to these observations, two main types of hypertrophic scars were identified. In the first type (7 scars), LCs were widely clustered within both the whole epidermis and the dermis. Their density was increased (about 750 cells/mm2 of epidermal area), if compared to control skin and normotrophic scars (both about 400 cells/mm2 of epidermal area; p less than 0.001). The epidermal cell profiles, nearly three times larger than those of control skin, exhibited a dense network of interconnected dendrites. Further analysis for the presence of HLA-DR molecules revealed an anomalous expression of these antigens on keratinocytes. In the second type (3 scars), LCs density within the stratum Malpighii was unchanged, relative to control skin and normal scars, while CDla-positive cell bodies remained numerous in basal position and within the subpapillary corion. Epidermal LCs, only slightly larger than those evidentiated in control skin, displayed short and retracted dendritic projections. The aberrant expression of HLA-DR antigens on keratinocytes was very weak and sparse. The present results strongly suggest an immunologically activated state of the tissues examined; they provide morphological data that support the involvement of the immune system in hypertrophic scarring.  相似文献   

12.
It was previously discovered that tail fin rays of larval amphioxus are long ciliary rootlets in posterior epidermal cells. This work describes the heretofore unknown origin and fate of these organelles in the Florida amphioxus (Branchiostoma floridae). In late embryos, epidermal cells at the posterior end of the body increase in height, thus producing a tail fin. One ciliary rootlet in each cell elongates and also rotates through about 90°, soon becoming oriented parallel to the long axis of the cell and running continuously from the apical to the basal plasma membrane. During the subsequent growth of the larval tail, the rootlets and epidermal cells housing them reach lengths up to 120 μm. At metamorphosis, the rootlets become vacuolated and rapidly decrease in length along with the height of the tail epidermis. Contemporaneously, abundant extracellular dermal matrix accumulates in the sagittal plane of the body to produce a predominantly dermal tail fin. Throughout postmetamorphic life, the posterior epidermal cells, now without ciliary rootlets, thinly cover a largely dermal tail flange. Thus, the specialized morphology of the amphioxus tail fin is generated by two different cellular mechanisms, involving different cell populations (ectodermal and mesodermal), at different life‐history stages.  相似文献   

13.
Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four‐lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red‐brown in juveniles to vivid dark‐brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. J. Morphol. 277:196–203, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Skin development is tightly temporally coordinated with its sensory innervation, which consists of the peripheral branches of the dorsal root ganglion (DRG) axons. Various studies suggest that the skin produces a long-range attractant for the sensory axons. However, the exact identity of the guidance cue(s) remains unclear. To reveal the detailed molecular mechanism that controls DRG axon guidance and targeting, manipulation of specific skin layers at specific time points are required. To test a variety of attractants that can be expressed in specific skin layers at specific timepoints, we combined in utero electroporation with the Tol2 transposon system to induce long-term transgene expression in the developing mouse skin, including in the highly proliferative epidermal stem cells (basal layer) and their descendants (spinous and granular layer cells). The plasmid solution was injected as close to the hindpaw plantar surface as possible. Immediately, electric pulses were passed through the embryo to transduce the plasmid DNA into hindpaw skin cells. Balancing outcome measurements including: embryo survival, transfection efficiency, and the efficiency of transgene integration into host cells, we found that IUE was best performed on E13.5, and using an electroporation voltage of 34V. After immunostaining embryonic and early postnatal skin tissue sections for keratinocyte and sensory axon markers, we observe the growth of axons into skin epidermal layers including areas expressing EGFP. Therefore, this method is useful for studying the interaction between axon growth and epidermal cell division/differentiation.  相似文献   

15.
Males of the two species of Mertensiella (M. caucasica and M. luschani) possess a tubercle projecting from the skin of the dorsal tail base, the single morphological character that defines the genus. The dorsal tail tubercle functions during courtship, and its role is similar in both species. The tubercle is inserted into the cloaca of the female during ventral amplexus, shortly before the male deposits a spermatophore. Histological examination, however, revealed that the dorsal tubercles differ structurally between the two species. In M. caucasica, the tubercle consists primarily of elongate mucous glands, with granular glands occurring only at the base. Both mucous and granular glands of the tubercle are larger than those in typical skin. Unlike typical skin, however, mucous glands are larger than granular glands. In M. luschani, mucous glands and granular glands occur throughout the tubercle, and the granular glands are larger than the mucous glands, although both types are larger than those in typical skin. The dorsal tubercles of M. caucasica and M. luschani may not be homologous structures and may have resulted from convergent evolution. J Morphol 232:93–105, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Ruby laser-assisted hair removal is thought to work via selective photothermolysis, which relies on light reaching the deeper layers of skin, and the absorption of light by the target chromophore, melanin. It is therefore possible that efficacy of treatment is affected by anatomic factors that determine the amount of light reaching the hair bulbs (i.e., skin color, depth of intracutaneous hair, epidermal thickness and dermal density) and the melanin content of hair. To examine this hypothesis, a prospective study was performed. Forty-eight volunteers were treated with the Chromos 694 Depilation Ruby Laser at a single standard fluence of 11 J/cm2. Treatment efficacy was determined by measuring hair density at 3 and 7 months after treatment. Epidermal depth and dermal density were measured from 2-mm biopsies taken before treatment, and the intracutaneous hair length was determined from plucked hair. Skin color was assessed using a spectrophotometer, and melanin content of dissolved hair was assessed using spectrophotometry. Efficacy of treatment for each patient was compared with the patient's age, intracutaneous hair length, epidermal depth, dermal density, skin color, and total melanin content and relative eumelanin content of hair. No correlation was found between the efficacy of treatment and age and the various anatomic factors. Patients with higher eumelanin content in their hair had better long-term results (Spearman rank test, p = 0.00219). The results suggested that the efficacy of treatment did not depend solely on the amount of laser light penetrating the skin but correlated well with the eumelanin content of hair. The clinical implication of this finding is discussed.  相似文献   

17.
Polyclonal antibodies were raised against Xenopus larva-specific 58 kDa keratin (PAK58) and adult-specific 63 kDa keratin (PAK63), in order to examine the origin of 63 kDa-keratin-producing cells in the tail skin. By immunofluorescent staining of the tail skin, the 58 kDa keratin was recognized in almost all of the larval epidermal cells, although a small number of PAK58-negative cells were detected at stage 64. In contrast, 63 kDa keratin was immunohistochemically recognized at stage 58, but the signal was very weak. The number of epidermal layers in the tail epidermis increased during a period from stage 58 to stage 64. At stage 64, a small number of PAK63-positive cells was clearly identified in the multilayered tail epidermis. Comparative analysis of successive sections showed that PAK63-positive cells are derived from a cell group differing from PAK58-positive cells. Immunohistochemical studies using cultured epidermal cells demonstrated that 58 kDa keratin is localized in the cytoskeletal bundles of skein cells, whereas 63 kDa keratin is produced not by skein cells but by basal cells and their descendants. These results suggest that basal cells are the adult precursor cells within the larval epidermis even in the tail area.  相似文献   

18.
Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts.Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.  相似文献   

19.
Some functional parameters were identified and assessed in a tissue-engineered self-assembled skin substitute. This skin substitute was produced using fibroblasts and keratinocytes isolated from adult human skin. Keratinocytes were seeded on a dermal layer, composed of two fibroblast sheets cultured for 35 d. The epidermal cells formed a stratified and cornified epidermis and expressed differentiation markers, notably involucrin and transglutaminase. Interestingly and for the first time, the receptor for vitamin D3 was detected in all of the epidermal cell layers of the skin substitute, as it is reported for normal human skin. This observation suggests that keratinocytes retain key receptors during their differentiation in the skin model. A network of collagen fibers was observed by electron microscopy in the dermal layer of the model. In the dermis, collagen fibers remodeling and assembly is dependent on enzymes, notably prolyl-4-hydroxylase. For the first time in a skin construct, the expression of prolyl-4-hydroxylase was detected in dermal fibroblasts by in situ hybridization. The secretion of collagenases by the cells seeded in our skin substitute was confirmed by zymography. We conclude that the self-assembly approach allows the maintenance of several functional activities of human skin cells in a skin model in vitro.  相似文献   

20.
We describe an organotypic model of mouse skin consisting of a stratified sheet of epidermal keratinocytes and dermal fibroblasts within a contracted collagen gel. The model was designed to maintain the polarity of stratified keratinocytes and permit their long-term culture at an air-liquid interface. After air exposure, the thickness of the keratinocyte sheet transiently increased and then decreased to two cell layers at 2 weeks. The two-cell-layer structure is similar to that of the adult mouse epidermis. Cytokeratin 5 was localized in the lowest cell layer in the epithelial sheet, but cytokeratin 1 and loricrin were localized in the outer cell layers, resembling mouse skin. The expressions of interleukin 1alpha and 1beta in the keratinocytes and of keratinocyte growth factor 1 and 2 in the fibroblasts correlated with keratinocyte stratification. The mouse organotypic coculture is useful in studying epithelial cell-mesenchymal cell interactions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号