首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Analytical differential centrifugation of rat heart homogenates revealed a single population of mitochondria and microperoxisomes. Using cytochorme c oxidase, malate dehydrogenase and amine oxidase as mitochondrial marker enzymes, the -value of mitochondria was estimated to = 10326 ± 406 S (average for the three marker enzymes). The −s-value of microperoxisomes was found to be −s = 1381 ± 40 S using catalase as the marker enzyme. The −s-value for the two orgenelles did not change significantly when the isoosmotic sucrose medium was substituted by an isoosmotic mannitol medium. 2. Analytical differential centrifugation revealed a polydispercity of the microsomal fraction using glucose-6-phosphatase and NADPH-cytochrome c reductase as the marker enzymes. The -values were found to be −sH1 = 1569 ± 412 S (NADPH-cytochrome c reductase), (glucose-6-phosphatase) and (NADPH-cytochrome c reductase and glucose-6-phosphatase). The recovery of marker enzymes in the isolated subcellular fractions was in the range of 84–94%. 3. When the mitochondrial and microperoxisomal fractions were subjected to isopycnic gradient centrifugation, using a self-generating gradient of polyvinylpyrrolidone-coated colloidal silica particles (Percoll) in 0.25 M sucrose medium, buoyant densities of 1.10 g/cm3 (main fraction of mitochondria) and 1.06 g/cm3 (main fraction of microperixosomes) were obtained. The density gradient centrifugation separated microperoxisomes from contaminating lysosomes of high specific activity in acid phosphatase. A value 1.04 g/cm3 was foung for the density of the microsomal fraction. 4. Based on the estimated -values, an optimal procedure is described for the isolattion of mitochondrial and microperoxisomal fractions from rat heart muscle.  相似文献   

2.
When mice are administered aromatic hydrocarbons, the induction of aryl hydrocarbon (benzo[a]pyrene) hydroxylase, p-nitroanisole O-demethylase, 7-ethoxycoumarin O-deethylase, and 3-methyl-4-methylaminoazobenzene N-demethylase activities—all membrane-bound mono-oxygenases having cytochrome P450 associated with their active sites—is associated with the same genetic locus or with closely linked loci; we have previously proposed that this genetic region be designated the Ah locus for aromatic hydrocarbon responsiveness. Expression of these four inducible enzyme activities occurs as a single autosomal dominant trait in offspring from a genetic cross between inbred C57BL/6N and DBA/2N mice and from the appropriate backcrosses and intercross. There are no striking differences in relative thermolability or ontogenetic expression among these four closely linked aromatic hydrocarbon-induced mono-oxygenase activities. All four of these microsomal enzyme activities exist in two forms—one predominantly present in control or aromatic hydrocarbon-treated genetically nonresponsive mice and the other predominantly present in aromatic hydrocarbon-treated genetically responsive mice; the latter form is preferentially inhibited in vitro by such compounds as α-naphthoflavone. Whether a single induction-specific protein or a group of induction-specific proteins is associated with the Ah locus remains uncertain. The expression of aminopyrine N-demethylase, d-benzphetamine N-demethylase, NADPH-cytochrome c reductase, and NADPH-cytochrome P450 reductase activities in aromatic hydrocarbon-treated genetically responsive and nonresponsive mice is not correlated with the Ah locus.  相似文献   

3.
1. The activities of the drug-metabolizing enzymes, benzphetamine N-demethylase, 7-ethoxy-coumarin O-deethylase and dicoumarol oxidation have been measured in vitro in the liver of camels, guinea pigs and rats.2. In these species, levels of hepatic microsomal parameters namely microsomal protein, cytochrome P450, cytochrome b5 and NADPH-cytochrome c reductase have also been determined.3. In general, camels seemed to have the lowest enzyme activity when compared to rats and guinea pigs.4. Some sex differences were observed in the levels of enzymes studied. In rats and guinea pigs, males had higher benzphetamine N-demethylase than females. However, in camels and guinea pigs, females had higher 7-ethoxycoumarin O-deethylase when compared to males.  相似文献   

4.
Subfractionation of preparations of rat liver microsomes with a suitable concentration of sodium deoxycholate has resulted in the isolation of a membrane fraction consisting of smooth surfaced vesicles virtually free of ribonucleoprotein particles. The membrane fraction is rich in phospholipids, and contains the microsomal NADH-cytochrome c reductase, NADH diaphorase, glucose-6-phosphatase, and ATPase in a concentrated form. The NADPH-cytochrome c reductase, a NADPH (or pyridine nucleotide unspecific) diaphorase, and cytochrome b5 are recovered in the clear supernatant fraction. The ribonucleoprotein particles are devoid of, or relatively poor in, the enzyme activities mentioned. Those enzymes which are bound to the membranes vary in activity according to the structural state of the microsomes, whereas those which appear in the soluble fraction are stable. From these findings the conclusion is reached that certain enzymes of the endoplasmic reticulum are tightly bound to the membranes, whereas others either are loosely bound or are present in a soluble form within the lumina of the system. Some implications of these results as to the enzymic organization of the endoplasmic reticulum are discussed.  相似文献   

5.
The effects of pretreatment with toluene, o-, m-, p-xylene and mesitylene were investigated on the microsomal enzymes of liver, kidney and lung in rats. The activities of aminopyrine N-demethylase, aryl hydrocarbon hydroxylase, aniline hydroxylase, NADPH-cytochrome c reductase, as well as the concentrations of cytochrome P-450 and cytochrome b5 were determined. The effects were most marked in the liver, where toluene caused increase in aniline hydroxylase and cytochrome P-450; o-xylene in aminopyrine N-demethylase and cytochrome b5; m-xylene and mesitylene in all the enzymes investigated. In kidneys, all the compounds increased the activity of aniline hydroxylase; m-xylene induced cytochrome P-450 and b5 as well as NADPH-cytochrome c reductase; p-xylene induced cytochrome P-450, and mesitylene cytochrome P-450 and b5. Aminopyrine N-demethylase activity was decreased by toluene. In lungs, only mesitylene caused any significant differences from the controls: increase in aminopyrine N-demethylase and aryl hydrocarbon hydroxylase, decrease in aniline hydroxylase. The methylbenzenes tested induced the microsomal enzymes in a rough correlation to the number of their methyl groups and their hydrophobic properties.  相似文献   

6.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

7.
Distinguishable patterns of cytoplasmic membrane senescence in cotyledon tissue of Phaseolus vulgaris have been elucidated by examining the behavior of four microsomal enzymes—NADH-cytochrome C reductase, NADPH-cytochrome C reductase, glucose-6-phosphatase and 5′-nucleotidase during germination. For young cotyledon tissue, specific activities for the phosphatases were similar for rough and smooth microsomal fractions, but both cytochrome C reductases were 2–3 times more concentrated in the smooth fraction. These proportionalities changed with increasing age. As senescence becomes more intense the enzyme activities change independently of one another. These changes do not appear to be influenced by the presence or absence of ribosomes on the membranes. Parallel analyses of phospholipid levels in the isolated fractions revealed that loss of microsomal enzyme activity correlates with an ultimate dismantling of the membranes into their macromolecular constituents. The data have been interpreted as indicating that functionally distinct membranes or regions of the same membrane are differentially sensitive to senescence.  相似文献   

8.
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450.  相似文献   

9.
Liver microsomal functions related to xenobiotic biotransformation and free radical production were studied in control rats and in animals subjected to L-3,3′,5-triiodothyronine (T3) and/or lindane administration as possible mechanisms contributing to oxidative stress, in relation to the activity of enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G-6PDH)) and content of lipid-soluble vitamins (α-tocopherol, β-carotene, and lycopene) affording antioxidant protection. Lindane treatment in euthyroid rats at a dosage of 20 mg/kg did not modify the content of liver microsomal cytochromes P450 and b5, the activity of NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase, and the production of superoxide radical (O·-2), as well as antioxidant systems, except for the reduction in lycopene levels. Hyperthyroidism elicited a calorigenic response and increased specific and molecular activities of NADPH-cytochrome P450 reductase, O·-2 generation, and G-6PDH activity, concomitantly with diminution in liver SOD and catalase activities and in α-tocopherol, β-carotene, and lycopene levels. The administration of lindane to hyperthyroid animals led to a further increase in the molecular activity of NADPH-cytochrome P450 reductase and in the O·-2 production/SOD activity ratio, and decrease of hepatic α-tocopherol content, in a magnitude exceeding the sum of effects elicited by the separate treatments, as previously reported for reduced glutathione depletion. Collectively, these data support the contention that the increased susceptibility of the liver to the toxic effects of acute lindane treatment in hyperthyroid state is conditioned by potentiation of the hepatic oxidative stress status.  相似文献   

10.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

11.
Glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) inactivates insulin by cleaving its disulfide bonds. The distribution of GSH-insulin transhydrogenase in subcellular fractions of rat liver homogenates has been studied. From the distribution of insulin-degrading activity and marker enzymes (glucose-6-phosphatase and succinate-INT reductase) (INT, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) after cell fractionation by differential centrifugation, the immunological analysis of the isolated subcellular fractions with antibody to purified rat liver GSH-insulin transhydrogenase, and chromatographic analysis (on a column of Sephadex G-75 in 50% acetic acid) of the products formed from 125I-labelled insulin after incubation with the isolated subcellular fractions, it is concluded that GSH-insulin transhydrogenase is located primarily in the microsomal fraction of rat liver homogenate. An enzyme(s) that further degrades insulin by proteolysis is located mainly in the soluble fraction; a significant amount of the protease(s) activity is also present in the mitochondrial fraction. The possibility has been discussed that the protease(s) acts upon the intermediate product of insulin degradation, A and B chains of insulin, rather than upon the intact insulin molecule itself.The GSH-insulin transhydrogenase in intact microsomes occurs in a latent state; it is readily released from the microsomal membrane and its activity is greatly increased by treatments which affect the lipoprotein membrane structure of microsomal vesicles. There include homogenization with a Polytron homogenizer, sonication, freezing and thawing, alkaline pH, the nonionic detergent Triton X-100, and phospholipases A and C.  相似文献   

12.
The influence of dietary allelochemical on ecdysone 20-monooxygenase activity was studied in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Feeding the indoles (indole-3-carbinol, indole-3-acetonitrile), flavonoids (flavone, β-naphthoflavone), monoterpenes (menthol, menthone, peppermint oil), and a coumarin (xanthotoxin) to the larvae stimulated midgut microsomal ecdysone 20-monooxygenase activity from 28 to 200% as compared with the controls. β-Naphthoflavone was the most potent inducer among those tested. Phenobarbital, a well-known cytochrome P450 inducer, also caused a 2-fold increase in the microsomal ecdysone 20-monooxygenase activity. Ecdysone 20-monooxygenase activity was 2.7-fold higher in the microsomal fraction than in the mitochondrial fraction isolated from larval midguts. Microsomal ecdysone 20-monooxygenase activity was highest in the fat body, followed by the midgut and Malpighian tubules. Tissue localization and enzyme inducibility were different between ecdysone 20-monooxygenase and xenobiotic-metabolizing cytochrome P450 monooxygenases, including aldrin epoxidase, biphenyl hydroxylase, methoxyresorufin O-demethylase, 7-ethoxycoumarin O-deethylase, p-chloro-N-methylaniline N-demethylase, and phorate sulfoxidase in fall armyworm larvae. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The effects of ascorbic acid (AA) deficiency on microsomal and soluble (postmicrosomal supernatant) enzymes which catalyze drug metabolism were studied in the guinea pig liver, lung, and kidney, (i) Twenty-one days of AA depletion produced a 50–60% decrease in hepatic cytochrome P-450 levels, 20–30% decreases in renal levels, but no significant changes in pulmonary cytochrome P-450 content. Upon repletion of ascorbic acid, recovery to control levels occurred within 7 days. (ii) The decreases in hepatic cytochrome P-450 in scurvy were not accompanied by a corresponding increase in cytochrome P-420. (iii) Aminopyrine N-demethylation decreased by 40% in livers of deficient animals, and recovered within 3 days, but there were no corresponding changes in lungs and kidneys. (iv) There were no significant alterations of NADPH-cytochrome c reductase activity in scorbutic animals in any of the three organs. (v) Activity of “native” UDP-glucuronyl transferase was increased in liver microsomes after 21 days of deficiency, but this apparent increase was not observed when the enzyme was fully activated in vitro with UDP N-acetylglucosamine. “Native” UDP-glucuronyl transferase was increased in kidneys of deficient animals and unchanged in lungs. (vi) In the postmicrosomal supernatant, glutathione S-aryl transferase activity in deficient livers decreased tc 50% of control and did not fully recover after 14 days of ascorbic acid repletion. These changes were not seen in kidney and lung. (vii) Also in the postmicrosomal supernatant, p-aminobenzoic acid (PABA) N-acetyl transferase activity increased in the kidneys of deficient animals, but was unchanged in liver and lungs. (viii) Addition of ascorbic acid in vitro to hepatic microsomes prepared from scorbutic animals had no effect on activities of aminopyrine N-demethylase, NADPH-cytochrome c reductase, PABA N-acetyl transferase, and glutathione S-aryl transferase.  相似文献   

14.
The dual localization of ecdysone 20-monooxygenase in mitochondria and microsomes of Manduca sexta larval midgut was investigated. Cosubstrate requirements and response to osmolarity of the microsomal ecdysone 20-monooxygenase system were found to be different from those previously reported for the mitochondrial enzyme system. The microsomal monooxygenase utilized NADPH and, less efficiently, NADH as cosubstrates. NADPH and NADH effects were neither additive nor synergistic. NADPH yielded identical activities in isotonic and hypotonic incubations. Mitochondria and microsomes showed no synergistic interaction for ecdysone 20-hydroxylation. After washing of the mitochondria, a large proportion of their ecdysone 20-monooxygenase activity was lost. The extent of the loss was inversely correlated to the concentration of mitochondria in the incubation mixture. The addition of bovine serum albumin to the incubations (2 mg/ml) largely restored the original activities. The microsomal contamination in mitochondrial pellets after each of three successive washings was determined by measuring the activity of a microsomal marker enzyme, NADPH-cytochrome c reductase. At each step of the purification, the ecdysone 20-monooxgenase activity of the mitochondrial preparations far exceeded the activity attributable to the microsomal contamination. These results confirm the existence of two independent ecdysone 20-monooxygenase systems in the midgut of M. sexta larvae.  相似文献   

15.
Pretreatment of mice with caffeine or theophylline for 3 days (100 mg/kg, intraperitoneally, twice daily) resulted in an increase in microsomal protein, RNA content, and cytochrome P-450 content. Caffeine but not theophylline also shortened the duration of action of pentobarbital in mice. Both xanthines, however, had no effect on the onset and duration of action of hexobarbital in these animals. Chemical measurements revealed that the activities of two drug-metabolizing enzymes, aminopyrine N-demethylase and p-nitroanisole O-demethylase, were markedly increased by this schedule of pretreatment with caffeine but slightly increased by theophylline. Further, it was found that the inductive effect of caffeine, but not of theophylline, was accompanied by complete depletion of glycogen granules in the liver and a high degree of proliferation of the smooth endoplasmic reticulum. This effect on glycogen depletion, which was followed by an elevation of blood glucose, may be the result of caffeine inhibition on hepatic phosphodiesterase, because the cyclic AMP content was more than doubled in caffeine-treated hepatocytes. It was concluded that the stronger stimulatory effect of caffeine on drug metabolism than theophylline might be attributed to a much more pronounced proliferation of hepatic endoplasmic reticulum caused by caffeine.  相似文献   

16.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37°C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

17.
The plasma membrane of the hepatoma cell line, HTC cells, has been characterized and purified by cell fractionation techniques. In the absence of true 5′-nucleotidase in HTC cells, alkaline phosphodiesterase I has been used as a marker enzyme, following conclusions gained from differential and isopycnic centrifugation studies (Lopez Saura, P., Trouet A. and Tulkens P. (1978) Biochim. Biophys. Acta 543, 430–449). To confirm this localization, HTC cells were exposed to anti-plasma membrane IgG at 4°C and fractionated. Alkaline phosphodiesterase I and IgG showed super imposable distribution patterns in linear sucrose gradients. Alkaline phosphodiesterase I is, however, only poorly resolved from enzyme markers of other organelles, especially NADPH-cytochrome c reductase (endoplasmic reticulum) and galactosyltransferase (Golgi complex). Maximal purification from the homogenate is only 13-fold, on a protein basis, even when using a microsomal fraction (67 and 13% of alkaline phosphodiesterase I and protein, respectively) as the starting material. Improved resolution can be obtained after the addition of small quantities of digitonin (equimolar with respect to the cholesterol content). Digitonin increases the buoyant density of alkaline phosphodiesterase I by approx. 0.05 g/cm3, whereas the buoyant densities of galactosyltransferase and NADPH-cytochrome c reductase are increased only by 0.03 and 0.015 g/cm3, respectively. Accordingly, a procedure has been designed which yields a fraction containing 22.8% of alkaline phosphodiesterase I with a purification of 21-fold on a protein basis. The content of NADPH-cytochrome c reductase and galactosyltransferase is 1.2 and 2.1%, respectively. Electron microscopy shows smooth surface membrane elements and vesicles, with only occasional other recognizable elements.  相似文献   

18.
A primary objective of the present study has been to determine the changes which occur in Rana catesbeiana liver organelle membranes during thyroxine-induced metamorphosis. To this end, enzyme and cytochrome profiles were determined for mitochondria, microsomes, and nuclear membrane fractions isolated from livers of R. catesbeiana tadpoles which had been fasted for 6 days at 15 +/- 0.5 degrees and then immersed in thyroxine, 2.6 X 10(-8) M, for periods of up to 12 days at 23.5 +/- 0.4 degrees. The ratio of total succinate-cytochrome c reductase activity in the initial homogenate fraction to the total activity of this mitochondrial "marker" enzyme recovered in the final mitochondrial fraction remained constant, approximately 0.5, throughout the course of thyroxine treatment; however, after a 3- to 4-day latency the mitochondrial protein mass recovered per unit mass of initial homogenate protein was found to increase significantly (approximately 2-fold by Day 10 of thyroxine treatment). A similar increase was also observed in the yield of microsomal, but not nuclear membrane, protein mass as a function of thyroxine treatment. Prolonged thyroxine treatment (12 days) resulted in approximately 50% decreases in tadpole liver homogenate and microsomal NADH-cytochrome c reductase specific activities; in contrast, mitochondrial and nuclear membrane NADH-cytochrome c reductase specific activities were not altered under the same conditions. In addition, homogenate and microsomal NADPH-cytochrome c reductase specific activities were found to have increased significantly after 12 days of thyroxine treatment; however, the specific activity of NADPH-cytochrome c reductase in the mitochondrial fraction was unchanged. It was also observed that thyroxine treatment resulted in increases in homogenate and microsomal glucose-6-phosphatase specific activities, whereas the mitochondrial as well as nuclear membrane glucose-6-phosphatase specific activities remained unchanged. Furthermore, in contrast to homogenate and mitochondrial monoamine oxidase specific activities, which decreased 30 and 40%, respectively, as a consequence of thyroxine treatment (12 days), the succinate-cytochrome c reductase and oligomycin-sensitive Mg2+ ATPase specific activities determined for these fractions increased significantly. In all instances, changes as a result of thyroxine treatment in membrane-localized homogenate or organelle enzyme specific activities were apparent only after a 3- to 4-day initial latent period. The in vitro effects of thyroxine (10(-10) - 10(-5) M) on the membrane-localized enzyme activities examined in this study were either negligible or, as in the case of mitochondrial succinate-cytochrome c reductase and microsomal NADH-cytochrome c reductase, opposite to the changes observed in response to in vivo thyroxine treatment, with the exception of microsomal NADPH-cytochrome c reductase activity which was enhanced approximately 2-fold by 10(-5) M thyroxine...  相似文献   

19.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum procued against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase techniques and an indirect fluorecent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

20.
Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号