首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo fertilization of goat eggs has been studied by electron microscopy. Eggs were recovered from superovulated or natural cyclic goats, 32 to 52 hours after the onset of oestrus; only eggs recovered between 46 and 52 hours were fertilized. Spermatozoa penetrated the zona pellucida tangentially leaving vesiculated products of the acrosome reaction at the zona surface. As sperm penetrated into the ooplasm, the second meiotic division completed and cortical granule exocytosis occurred. However a few unreacted cortical granules usually remained in the cortex of the two fertilized eggs, adjacent to the plasma membrane. After swelling the two pronuclei presented similar ultrastructural morphology: they contained small, compact, agranular nucleoli and unevenly distributed chromatin. The cytoplasm in close vicinity to the apposed pronuclei contained large stacks of annulate lamellae, smooth endoplasmic reticulum, prominent Golgi complexes, as well as dense areas of unidentified material. The abundance of cytoplasmic organelles near the pronuclei might be the expression of intensive metabolic activity. Conversely, in the cortex of fertilized ova several large organelles-free cytoplasmic areas were randomly distributed.  相似文献   

2.
In vivo fertilization of sheep eggs has been studied by electron microscopy. Remnants of the acrosome reaction were present at the zona surface of every penetrated egg, indicating that the acrosome reaction in sheep occurs at the surface of the zona pellucida. To determine whether follicular oocytes could specifically bind spermatozoa, oocytes isolated from different size classes of antral follicles were transferred into the oviducts of mated ewes, recovered 4 hr 30 min later, and analyzed by electron microscopy. Oocytes from follicles up to 1 mm in diameter failed to bind spermatozoa and were not penetrated. In contrast, the zona of oocytes from follicles ? 2 mm in diameter induced the acrosome reaction. These oocytes were penetrated but failed to achieve cortical granule exocytosis and so to mount a block to polyspermy. Moreover, sperm nuclei incorporated into the ooplasm did not decondense although the sperm nuclear envelope was dispersed.  相似文献   

3.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

4.
The formation of male and female pronuclei in physiologically monospermic fertilized eggs of the goldfish, Carassius auratus , has been investigated with transmission electron microscopy. Ultrastructural observations show that at 26°C the transformation of the sperm nucleus takes place very quickly. The sperm nuclear envelope degenerates and is replaced by a large number of smooth surface vesicles 1 min post-insemination. Concomitantly, most of the condensed sperm chromatin is dispersed and is surrounded by vesicles. Dispersion of the chromatin is followed by the fusion of vesicles and the formation of a new bilaminar pronuclear envelope. Within 5–10 min post-insemination, a spheroid male pronucleus with intranuclear annulate lamellae is produced. The formation of a female pronucleus is slightly different to that of the male pronucleus. The dispersing chromatin of the egg is divided into many groups, most of which are surrounded by multilaminar envelopes 5 min post-insemination. An ellipsoid female pronucleus with a continuous bilaminar pronuclear envelope and intranuclear annulate lamellae is formed 15 min post-insemination. Subsequently, the two pronuclei migrate towards one another. When the fully developed male and female pronuclei are located in the center of the blastodisc, each changes itself into a saccular complex 25 min post-insemination.  相似文献   

5.
The question of whether the acrosome reaction, which leads to fertilization, occurs in intact sperm bound to the zona pellucida of the egg or in intact sperm before contact with the egg, was addressed by assessing the effect of 3-quinuclidinyl benzilate (QNB) on the two types of acrosome reaction. QNB is a specific inhibitor of the fertilization of zona-intact mouse eggs by mouse sperm. Mouse spermatozoa in suspension underwent acrosome reactions at a low rate, which could be accelerated by addition of 5 μM divalent cation ionophore A23187; the occurrence of such acrosome reactions was not inhibited by QNB. The rate at which acrosome reactions occurred in sperm bound to the zona pellucida of cumulus-free eggs, bound to isolated zonae, or exposed to acid-solubilized zona components, was greatly accelerated relative to that observed in the absence of zonae. These acrosome reactions were strongly inhibited by QNB at concentrations which inhibit the fertilization of zona-intact mouse eggs in vitro. These data suggest that the zona pellucida can induce acrosome reactions in mouse spermatozoa and that these acrosome reactions are the ones which lead to the fertilization of zona-intact eggs. In contrast, the acrosome rection in sperm which are not in contact with the zona is not associated with fertilization of zona-intact eggs.  相似文献   

6.
We have developed an assay for detecting the acrosome reaction in mouse sperm using chlortetracycline (CTC) as a fluorescent probe. Sperm known to be intact with nonreacted acrosomes show CTC fluorescence in the presence of Ca2+ over the anterior portion of the sperm head on the plasma membrane covering the acrosome. Sperm which have undergone the acrosome reaction do not show fluorescence on the sperm head. Mouse sperm bind to zonae pellucidae of cumulus-free eggs in vitro in a Ca2+-dependent reaction; these sperm are intact by the CTC assay. Intact sperm bind to mechanically isolated zonae under the same conditions: the egg is apparently unnecessary for this inital reaction. Sperm suspensions, in which greater than 50% of the motile population had completed the acrosome reaction, were prepared by incubation in hyperosmolal medium followed by treatment with the divalent cation ionophore, A23187. Cumulus-free eggs challenged with such sperm suspensions preferentially bind intact sperm; acrosome-reacted sperm do not bind. We conclude that the plasma membrane of the mouse sperm is responsible for recognition of the egg's zona pellucida and that the obligatory sequence of reactions leading to fusion of mouse gametes is binding of the intact sperm to the zona pellucida, followed by the acrosome reaction at the zona surface, followed in turn by sperm penetration of the zona.  相似文献   

7.
Mouse sperm bind to the zona pellucida of the egg prior to penetration of the zona and entry into the perivitelline space. The question then arises: when does the acrosome reaction occur relative to these processes? An ultrastructural study of mouse epididymal sperm bound to the surface of the zona and in the privitelline space was undertaken to clarify this point. Cumulus-free mouse eggs were inseminated in either a complete defined culture medium capable of supporting in vitro fertilization or in Tris/NaCl buffer containing Ca+2. Both media support sperm binding to the zona to the same extent; binding is complete in 15 minutes. Unbound sperm were removed by a step gradient density centrifugation to yield a preparation of eggs with sperm firmly bound. All sperm in the perivitelline space had undergone the acrosome reaction. Sperm bound at the surface of the zonae pellucidae of eggs recovered at ten minutes after insemination all had intact acrosomes. At 40 minutes after insemination, half of the sperm were intact; the other half were in the initial stages of the acrosome reaction. At 90 minutes after insemination, 12% of the sperm had undergone the full acrosome reaction and were starting to penetrate the zona; of the balance, half were in various stages of the acrosome reaction, while half were still intact. These findings support the hypothesis that the sequence of the early reactions leading to fertilization in the mouse is: intact sperm binding to zona; acrosome reaction at the zona surface; penetration of the zona.  相似文献   

8.
《The Journal of cell biology》1984,98(4):1222-1230
A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.  相似文献   

9.
Changes in sperm nuclei incorporated into starfish, Asterina miniata, eggs inseminated at different stages of meiosis have been correlated with the progression of meiotic maturation. A single, uniform rate of sperm expansion characterized eggs inseminated at the completion of meiosis. In oocytes inseminated at metaphase I and II the sperm nucleus underwent an initial expansion at a rate comparable to that seen in eggs inseminated at the pronuclear stage. However, in oocytes inseminated at metaphase I, the sperm nucleus ceased expanding by meiosis II and condensed into chromosomes which persisted until the completion of meiotic maturation. Concomitant with the formation and expansion of the female pronucleus, sperm chromatin of oocytes inseminated at metaphase I enlarged and developed into male pronuclei. Condensation of the initially expanded sperm nucleus in oocytes inseminated at metaphase II was not observed. Instead, the enlarged sperm nucleus underwent a dramatic increase in expansion commensurate with that taking place with the maternal chromatin to form a female pronucleus. Fusion of the relatively large female pronucleus and a much smaller male pronucleus was observed in eggs fertilized at the completion of meiotic maturation. In oocytes inseminated at metaphase I and II, the male and female pronuclei, which were similar in size, migrated into juxtaposition, and as separate structures underwent prophase. The chromosomes in each pronucleus condensed, intermixed, and became aligned on the metaphase palate of the mitotic spindle in preparation for the first cleavage division. These observations demonstrate that the time of insemination with respect to the stage of meiotic maturation has a significant effect on sperm nuclear transformations and pronuclear morphogenesis.  相似文献   

10.
Studies examining cytoplasmic and sperm nuclear transformations in sea urchin (Arbacia punctulata) eggs inseminated at different periods after ammonia activation have been caried out at the light- and electron-microscopic levels of observation. Arbaca eggs treated with ammonia-seawater demonstrated chromosome condensation after DNA synthesis and underwent a chromosome cycle similar to that described for Lytechinus [Mazia, 1947]. Cortical granule reaction, fertilization cone formation, and sperm aster development in eggs fertilized at 20 (interphase), 50 (prometaphase), and 180 (interphase) min after ammonia activation were structurally simialr to processes in untreated zygotes. Cyclical changes in the formation of fertilization cones and sperm asters, as reported for eggs fertilized after activation by agents that induce a cortical granule reaction, were not observed. Although sperm nuclear transformations were prolonged (14 vs 18 min), male pronuclei that developed in eggs fertilized 20 min after ammonia activation were morphologically similar to those observed in fertilized, untreated ova and incorporated 3H-thymidine. Sperm incorporated into eggs at 50 min after ammonia activation underwent nuclear envelope breakdown and chromatin despersion; however, 3H-thymidine incorporation was not observed, and male pronuclei rarely developed (less than 5% of all specimens examined). Subsequent to dispersion, the paternal chromatin condensed into chromosomes which were associated with an aster. These results demonstrate that although ammonia-activated eggs inseminated at interphase or prometaphase undergo similar cytoplasmic alterations, sperm nuclear transformations vary with the chromosome cycle of the egg.  相似文献   

11.
We have compared the ability of uncapacitated, capacitated acrosome intact, and acrosome-reacted hamster sperm to penetrate the cumulus and corona radiata of fresh hamster oocyte-cumulus complexes (OCC) in vitro. This was done using physiological numbers (1-20) of sperm so that cumulus and corona radiata cells did not disperse during challenge. Uncapacitated sperm did not penetrate to the zona pellucida surface; most (74%) uncapacitated sperm bound to cumulus cells at the periphery of the OCC. Capacitated acrosome-intact sperm penetrated to the zona pellucida surface; a significant percentage of these sperm arrived at the zona pellucida without showing evidence of initiating an acrosome reaction. Most capacitated acrosome-reacted sperm did not enter the extracellular matrix between cumulus and corona radiata cells; those which did penetrated to the zona surface with difficulty, if at all. These results suggest that the changes which occur in the sperm surface during capacitation are more important than the acrosome reaction in enabling hamster sperm to penetrate the cumulus and corona radiata. The effects of gold sodium thiomalate (GST) and polyphloretin phosphate (PPP) (inhibitors of hyaluronidase) on penetration of the OCC by capacitated sperm were also examined. Both synthetic inhibitors blocked sperm penetration to the zona pellucida, but the effective concentrations of inhibitors were far in excess of what was needed to block hyaluronidase activity. Reasons for concluding that the action of these inhibitors is nonspecific are discussed. These data show that hamster sperm with intact acrosomes can penetrate the cumulus and corona radiata cell layers of fresh OCC in vitro and support the hypothesis that the acrosome reaction occurs on the zona pellucida surface.  相似文献   

12.
In the initial step of pronuclear association in fertilized fish eggs, the female and male pronuclei (containing large nucleolus-like bodies) were juxtaposed in the center of the blastodisc and formed nucleoplasmic projections along adjacent surfaces. After contact of the pronuclei, small internuclear bridges joining them were formed by fusion at several regions of the nuclear envelope projections. No specific site of fusion or breakdown of nuclear envelopes was recognized in the pronuclei during karyogamy. In the advanced stage, clumps of condensing chromatin appeared in the nucleoplasm of the newly fused pronuclei. The number and diameter of the internuclear bridges increased gradually by progressive fusion in many regions, finally yielding a spherical zygote nucleus. Following complete formation of the zygote nucleus, the pronuclear envelope began to break down concomitantly with shrinkage of the nucleoplasm, which was highly convoluted around the entire nuclear surface. The nucleoplasm containing chromosomes then mingled with the perinuclear cytoplasm.  相似文献   

13.
Using a semi-chemically defined medium, the requirement of extracellular Ca2+ for survival, capacitation, and acrosome reaction of spermatozoa as well as various stages of fertilization in the hamster was studied. A Ca2+-deficient environment is unfavorable for long-term survival of spermatozoa. Sperm capacitation may occur in Ca2+-deficient media, but not as efficiently as in normal media. The acrosome reaction definitely requires extracellular Ca2+. Other processes or phenomena that require extracellular Ca2+ are initiation and maintenance of hyperactivated motility of spermatozoa, penetration of acrosome-reacted spermatozoa into the zona pellucida, fusion of the spermatozoa with eggs, and the development of pronuclear eggs into two-cell embryos. Extracellular Ca2+ is apparently unnecessary for the attachment of spermatozoa to the zona and egg surfaces, decondensation of the sperm nucleus, and the development of sperm and egg pronuclei within the egg. These results were compared with data obtained in other species such as the sea urchin, mouse, rat and guinea pig.  相似文献   

14.
Changes in the morphology of the sperm nucleus in the egg cytoplasm are mong the immediate events in nucleocytoplasmic interactions during early embryogenesis. Soon after its entrance into the egg cytoplasm, the sperm nucleus of various organisms increases in size with the transformation of condensed chromatin to a diffuse state, resembling the chromatin of an interphase nucleus (2, 13, 15, 16). This is followed by a close association or fusion of male and female pronuclei (2, 13, 15, 16). Cytoplasmic influences on nuclear morphology have also been demonstrated clearly in nuclear transplantation and cell fusion studies (10, 11). Reactivation of the nucleus, such as the transplanted brain nucleus in Xenopus egg cytoplasm or the hen erythrocyte nucleus in interphase cytoplasm of HeLa cells, is accompanied by nuclear enlargement and chromatin dispersion (10, 11). However, premature mitotic-like chromosome condensation takes place in the nuclei of sperm or interphase cells fused with mitotic cells (9, 12). Thus, chromosome dispersion and condensation seem to depend on the state of the cytoplasm in which the nucleus is present. These observations imply that the initial morphological changes in the sperm nucleus after fertilization may very well be dependent on the state of maturation of eggs at the time of sperm entry. Unfertilized eggs of Urechis caupo, a marine echiuroid worm, are stored at the diakinesis stage. These eggs complete maturation division after insemination and this is followed by fusion of male and female pronuclei (5, 8). Therefore, Urechis caupo is a suitable organism in which to study the response of the sperm nucleus to the changing state of the egg cytoplasm during and after postfertilization maturation division.  相似文献   

15.
Over the past 40 years evidence from many sources has indicated that the mammalian acrosome reaction occurs within or near the cumulus oophorus. Recently, however, workers investigating in vitro fertilization in the mouse have concluded that in this system the acrosome reaction takes place on the surface of the zona pellucida. We have investigated the interaction of rat spermatozoa and the zona pellucida by using the scanning electron microscope (SEM) and two monoclonal antibodies which are directed to antigens of the rat sperm acrosome. When in vitro inseminated eggs from which the cumulus has been removed are viewed with the SEM some sperm heads on the surface of the zona pellucida appear unaltered whereas others appear to be undergoing changes. In vivo, all displayed altered head morphology. Using immunogold labeling we found that the two antibodies employed, 2C4 and 5B1, were directed to acrosomal content and vesiculating acrosomal membranes. Immunofluoresence staining of zonae pellucidae in in vitro fertilization studies revealed numerous small positive regions. These were presumably acrosomal content and membranes which had been left on the zona surface by spermatozoa which had been associated with the zona surface. Our results suggest that the rat acrosome interacts with the zona pellucida. During this interaction some acrosomal content and membranes detach from the spermatozoon and remain on the surface of the zona pellucida.  相似文献   

16.
In this study, we investigated the functions of PH‐20 and acrosin during the interaction of macaque sperm with the zona pellucida. Both of these sperm enzymes have been reported to be present on the inner acrosomal membrane of acrosome reacted sperm, and have been suggested to play a role during secondary sperm‐zona binding in other species. Anti‐macaque PH‐20 IgG, anti‐pig acrosin IgG and soybean trypsin inhibitor (SBTI) were used as probes for immunolocalization of the two proteins at the ultrastructural level, and as reagents for blocking sperm penetration of the macaque zona pellucida in vitro. As a control, we performed similar studies with antibodies to CD‐46, which is also located on the inner acrosomal membrane, but has no known function in sperm‐zona pellucida interaction. After labeling with anti‐acrosin IgG, gold label was not present on the sperm surface before the acrosome reaction, but was detected over the entire head of sperm that were induced to acrosome react with calcium ionophore A23187. In contrast, when sperm were induced to acrosome react by binding to intact zona pellucida, acrosin was present in the acrosomal shroud but not on the inner acrosomal membrane. Similar results were obtained when SBTI was used as a probe for enzyme localization. PH‐20 and CD‐46 were demonstrated on the inner acrosomal membrane of sperm induced to acrosome react by ionophore treatment and by zona binding. Neither anti‐acrosin IgG nor anti‐CD‐46 IgG affected sperm penetration of the zona at concentrations up to 300 μg/ml, but zona penetration was blocked completely when anti‐PH‐20 IgG (100 μg/ml) was present during sperm‐oocyte interaction. Ultrastructural observations of oocytes incubated with anti‐PH‐20 IgG showed that acrosomal shrouds were present on the zona surface but no sperm had begun to penetrate into the zona substance. We conclude that anti‐PH‐20 IgG prevented sperm penetration of the macaque zona pellucida by interference with secondary sperm‐zona binding, rather than primary sperm‐zona binding or the zona‐induced acrosome reaction. Acrosin was not detected on the inner acrosomal membrane of sperm that are induced to acrosome react after zona binding, and acrosin does not appear to be critical for sperm penetration of the macaque zona pellucida. Mol. Reprod. Dev. 53:350–362, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

18.
Sperm penetration of the zona pellucida and fertilization are inhibited in mouse eggs treated with phorbol esters and the diacylglycerol, sn-1,2-dioctanoyl glycerol. The effect appears mediated by the zona pellucida, since zona-free eggs treated with these compounds are fertilized to the same extent as untreated eggs. Moreover, the binding of sperm to isolated zonae incubated in the absence or presence of biologically active phorbol esters is similar. Last, sperm treated with phorbol esters or sn-1,2-dioctanoyl glycerol bind to eggs and undergo the acrosome reaction to the same extent as untreated sperm. The inhibitory effect on fertilization is correlated with an egg-induced modification of at least ZP2, as manifested by a change in its electrophoretic mobility in polyacrylamide gels. In addition, changes in the biological properties of the treated zonae occur, such that sperm binding is not altered, but that the final stage(s) of the zona-induced acrosome reaction is inhibited. Zonae obtained from phorbol ester- or diacylglycerol-treated eggs should provide a system to study both the structural modifications of the zona proteins that are involved in induction of the acrosome reaction, as well as, delineating the sequence of events that comprise the acrosome reaction.  相似文献   

19.
The involvement of newly synthesized proteins and calcium in meiotic processes, sperm nuclear transformations, and pronuclear development was examined in emetine-treated, fertilized, and A-23187-activated Spisula eggs by observing changes in the morphogenesis of the maternal and paternal chromatin. Emetine treatment (50 micrograms/ml) initiated 30 min before fertilization or A-23187 activation inhibited incorporation of [3H]leucine into TCA-precipitable material and blocked second polar body formation. Sperm incorporation and the initial enlargement of the sperm nucleus were unaffected; however, the dramatic enlargement and transformation of the sperm nucleus into a male pronucleus, which normally follow polar body formation, were delayed 10 to 20 min. Unlike the situation in untreated, control eggs, male pronuclear development took place while the maternally derived chromosomes remained condensed. It was not until approximately 20 min after the normal period of pronuclear development that the maternal chromosomes dispersed and formed a female pronucleus in emetine-treated, fertilized eggs. Formation of pronuclei, however, was unaffected in both emetine-treated, A-23187-activated eggs and fertilized eggs incubated with A-23187. These observations indicate that germinal vesicle breakdown, first polar body formation, and initial transformations of the sperm nucleus are independent of newly synthesized proteins. Inhibition of second polar body formation and the delay in pronuclear development brought about by emetine, as well as the appearance of silver grains over pronuclei in autoradiographs of control eggs incubated with [3H]leucine demonstrate that nascent proteins are involved with the completion of meiotic maturation and the development of male and female pronuclei. The ability of A-23187 to override the inhibitory effects of emetine on pronuclear development suggests that both nascent protein and calcium signals are involved in regulating the status of the maternal and paternal chromatin during pronuclear development.  相似文献   

20.
Previous studies have suggested that both acrosome-intact and acrosome-reacted guinea pig sperm are capable of binding to the zona pellucida of cumulus-free oocytes, but the acrosomal status of guinea pig sperm during penetration of the cumulus has not been reported. We made video recordings of the interaction between capacitated guinea pig sperm and cumulus-invested guinea pig oocytes. The videotapes were analysed to identify sperm with hyperactivated motility and to classify the acrosomal status of sperm during penetration of the cumulus and after binding to the zona pellucida. The resolution of the video recordings was not sufficient to recognise sperm with swollen acrosomes. However, sperm that had completed the acrosome reaction were easily identified. Acrosome-reacted sperm were found adherent to the outer boundary of the cumulus, but were never observed to penetrate the cumulus. The percentage of acrosome-intact, hyperactivated sperm was higher in the cumulus oophorus than in culture medium, suggesting that changes in motility were elicited in response to contact with the cumulus. Fully acrosome-reacted sperm were found adherent to the zona pellucida, and solubilised guinea pig zona pellucida was capable of inducing acrosome reactions in capacitated guinea pig sperm. Acrosome-intact sperm were also observed on the zona, but they were not tightly bound and did not have hyperactivated motility, suggesting that these sperm were not functionally capacitated. Our observations demonstrate that guinea pig sperm penetrate the cumulus matrix in an acrosome-intact state. Although we did not observe sperm undergoing the acrosome reaction, our observations and experimental data suggest that the acrosome reaction of guinea pig sperm is completed on or near the surface of the zona pellucida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号