首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultured human lung fibroblasts treated with Clostridium difficile toxin B, the development of the cytopathogenic effect was inhibited by the proton ionophore monensin but was not affected by some other ionophores. The calcium channel blockers verapamil and LaCl3 protected the cells against intoxication, as did the calmodulin antagonists trifluoperazine, amitriptyline, R 24571, and dansylcadaverine. Since these agents could not prevent intoxication when added after the toxin internalization was completed, we suggest that calmodulin and uptake of extracellular calcium are needed for the internalization but not for the cytosolic action of the toxin.  相似文献   

2.
Diphtheria toxin linked by a disulfide bridge to concanavalin A was highly toxic to HeLa S3 and Vero cells, as well as to murine L cells. The cells could be protected with alpha-methyl mannoside, indicating that the conjugate binds mainly through its concanavalin A moiety. Treatment of Vero cells with phospholipase C, TPA (12-O-tetradecanoylphorbol-13-acetate), and vanadate, which strongly reduce the ability of the cells to bind free diphtheria toxin, had little protective effect against the conjugate, whereas SITS (L-acetamido-4'-isothiocyano-stilbene-2,2'disulfonic acid), which inhibits diphtheria toxin binding, as well as the subsequent entry, protected Vero cells, but not L cells. Both types of cells are protected against the conjugate by NH4Cl and monensin, indicating that an acidified compartment is necessary for entry into the cytosol. Exposure of cells, bound with surface conjugate, to low pH induced entry of the toxin into Vero cells, but not into L Cells. Phospholipase C, TPA, and vanadate did not protect L cells against the conjugate. It is concluded that toxin in the conjugate enters L cells by a route which involves low pH, but which is not identical to that in Vero cells.  相似文献   

3.
Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protected only when it was added within a short period of time after modeccin. Compounds that increase the pH of intracellular vesicles, protected even when added after 2 h, indicating that modeccin remains inside vesicles for a considerable period of time before it enters the cytosol. After addition of diphtheria toxin to the cells, compounds that increase the pH of intracellular vesicles protected only approximately to the same extent as antitoxin. This indicates that after endocytosis diphtheria toxin rapidly enters the cytosol. At 20 degrees C, the cells were more strongly protected against modeccin than against diphtheria toxin. The residual toxic effect of diphtheria toxin at 20 degrees C could be blocked with NH4Cl whereas this was not the case with modeccin. This indicates that at 20 degrees C the uptake of diphtheria toxin occurs by the normal route, whereas the uptake of modeccin occurs by a less efficient route than that dominating at 37 degrees C. The results indicate that after endocytosis diphtheria toxin rapidly enters the cytosol from early endosomes with low pH (receptosomes). Modeccin enters the cytosol much more slowly, possibly after fusion of the endocytic vesicles with another compartment.  相似文献   

4.
We have observed a striking differential effect of the ionophore, monensin, on replication of influenza virus and vesicular stomatitis virus (VSV) in Madin-Darby canine kidney (MDCK) and baby hamster kidney (BHK21) cells. In MDCK cells, influenza virus is assembled at the apical surfaces, whereas VSV particles bud from the basolateral membranes; no such polarity of maturation is exhibited in BHK21 cells. A 10(-6) M concentration of monensin reduces VSV yields in MDCK cells by greater than 90% as compared with controls, whereas influenza virus yields are unaffected. In BHK21 cells, monensin also inhibits VSV production, but influenza virus is also sensitive to the ionophore. Immunofluorescent staining of fixed and unfixed MDCK monolayers indicates that VSV glycoproteins are synthesized in the presence of monensin, but their appearance on the plasma membrane is blocked. Electron micrographs of VSV-infected MDCK cells treated with monensin show VSV particles aggregated within dilated cytoplasmic vesicles. Monensin-treated influenza virus-infected MDCK cells also contain dilated cytoplasmic vesicles, but virus particles were not found in these structures, and numerous influenza virions were observed budding at the cell surface. These results indicate that influenza virus glycoprotein transport is not blocked by monensin treatment, whereas there is a block in transport of VSV G protein. Thus it appears that at least two distinct pathways of transport of glycoproteins to the plasma membrane exist in MDCK cells, and only one of them is blocked by monensin.  相似文献   

5.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

6.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

7.
Melittin, an amphipatic polypeptide, increases several fold the activity of Na-K pump in quiescent Swiss 3T3 cells. As with other growth factors, melittin increases the activity of the pump by increasing Na entry into the cell. In contrast, other early responses are not elicited by the toxin. At concentrations that promote ion fluxes, melittin stimulates DNA synthesis in quiescent mouse cells acting synergistically with insulin, epidermal growth factor and with the growth factor released by SV40 BHK cells. In contrast, melittin does not interact synergistically with either phorbol esters or vasopressin. The cellular effects of melittin are consistent with the proposal that ion fluxes signal the initiation of mitogenesis in quiescent cells.  相似文献   

8.
Dansylcadaverine, which structurally resembles the calmodulin antagonists W-7 and W-5, prevented the calmodulin dependent stimulation of 3′:5′-cyclic nucleotide phophodiesterase invitro. Dansylcadaverine and trifluoperazine sensitized cells to Pseudomonasaeruginosa exotoxin A in apparently the same way, exept that 40 times higher concentrations of dansylcadaverine than of trifluoperazine was required.  相似文献   

9.
We describe here three different hamster cell mutants which are resistant to diphtheria toxin and which provide models for investigating some of the functions required by the toxin inactivates elongation factor 2 (EF-2). Cell-free extracts from mutants Dtx(r)-3 was codominant. The evidence suggests that the codominant phenotype is the result of a mutation in a gene coding for EF-2. The recessive phenotype might arise by alteration of an enzyme which modifies the structure of EF-2 so that it becomes a substrate for reaction with the toxin. Another mutant, Dtx(r)-2, contained EF-2 that was sensitive to the toxin and this phenotype was recessive. Pseudomonas aeruginosa exotoxin is known to inactivate EF-2 as does diphtheria toxin and we tested the mutants for cross-resistance to pseudomonas exotoxin. Dtx(r)-1 and Dtx(r)-3 were cross-resistant while Dtx(r)-2 was not. It is known that diphtheria toxin does not penetrate to the cytoplasm of mouse cells and that these cell have a naturally occurring phenotype of diphtheria toxin resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance of the hybrid cells to diphtheria toxin. Intraspecies hybrids containing the genome of mutants Dtx(r)-1 and Dtx(r)-3 had some resistance while those formed with Dtx(r)-2 were as sensitive as hybrids derived from fusions between wild-type hamster cells and mouse 3T3 cells.  相似文献   

10.
The effect of weak bases (NH4Cl and amantadine) and carboxylic ionophores (monensin) on the infection of CD4 (T4) positive human cell lines by HIV-1 is examined. These reagents, which raise the pH of acidic intracellular organelles, fail to inhibit HIV-1 entry and the events leading to viral protein synthesis at concentrations inhibitory for low pH-dependent fusogenic enveloped viruses. The infectivity of VSV (HIV-1) pseudotypes is unaffected by weak bases at concentrations causing 95% plaque reduction of VSV in its own envelope. HIV-1 dependent cell--cell fusion (syncytium formation) occurs in medium maintained at pH 7.4-7.6, and virions are not irreversibly inactivated by incubation in acid medium. Our results show that HIV-1 entry and membrane fusion do not require exposure to low pH. The production of infectious HIV-1 particles, however, is inhibited in cells treated with NH4Cl.  相似文献   

11.
12.
Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca(2+) receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L., Feng, X., and McDonald, J. M. (2003) Endocrinology 144, 4536-4543). We show here that a 3-h treatment of mouse osteoclasts with either of the calmodulin antagonists, tamoxifen or trifluoperazine, induces osteoclast apoptosis dose-dependently. Tamoxifen, 10 microm, and trifluoperazine, 10 microm, induce 7.3 +/- 1.8-fold and 5.3 +/- 0.9-fold increases in osteoclast apoptosis, respectively. In Jurkat cells, calmodulin binds to Fas, the death receptor, and this binding is regulated during Fas-mediated apoptosis (Ahn, E. Y., Lim, S. T., Cook, W. J., and McDonald, J. M. (2004) J. Biol. Chem. 279, 5661-5666). In osteoclasts, calmodulin also binds Fas. When osteoclasts are treated with 10 microm trifluoperazine, the binding between Fas and calmodulin is dramatically decreased at 15 min and gradually recovers by 60 min. A point mutation of the Fas death domain in the Lpr(-cg) mouse renders Fas inactive. Using glutathione S-transferase fusion proteins, the human Fas cytoplasmic domain is shown to bind calmodulin, whereas a point mutation (V254N) comparable with the Lpr(-cg) mutation in mice has markedly reduced calmodulin binding. Osteoclasts derived from Lpr(-cg) mice have diminished calmodulin/Fas binding and are more sensitive to calmodulin antagonist-induced apoptosis than those from wild-type mice. Both tamoxifen- and trifluoperazine-induced apoptosis are increased 1.6 +/- 0.2-fold in Lpr(-cg)-derived osteoclasts compared with osteoclasts derived from wild-type mice. In summary, calmodulin antagonists induce apoptosis in osteoclasts by a mechanism involving interference with calmodulin binding to Fas. The effects of calmodulin/Fas binding on calmodulin antagonist-induced apoptosis may open a new avenue for therapy for osteoporosis.  相似文献   

13.
J Piette  M Yaniv 《The EMBO journal》1987,6(5):1331-1337
Two nuclear factors from mouse 3T6 cells bind to a 22-bp segment constituting the alpha-domain of the polyoma virus enhancer. Binding of each factor can be competed out selectively by the appropriate double-stranded oligonucleotide, indicating that this binding is not strictly cooperative. Sequence homology between the two binding sites and the similar size of the protected regions may indicate that both factors, PEA1 and PEA2, are closely related. The binding site of PEA1 is centered on a sequence showing strong homology to the SV40 enhancer, the binding site of PEA2 is located immediately adjacent to it and shows a strong homology to the c-fos enhancer. Surprisingly, both SV40 and c-fos enhancers interact with PEA1, probably due to the presence of an extra base pair relative to c-fos in the PEA2 site. Factor PEA1 is probably identical to the recently described activator protein 1 (AP1).  相似文献   

14.
Staphylococcal delta toxin is a protein capable of rapidly disrupting cell membranes. Synchronized populations of 3T3 mouse fibroblasts in mitosis and early G1 phases of the cell cycle exhibit resistance to delta toxin at concentrations cytolytic to interphase cells. Similar results were obtained with HeLa cells grown attached or in suspension culture. Increased resistance appears to result from structural or biochemical features other than cell rounding or detachment. Delta toxin stimulated significantly less cellular phospholipase A2 (a potentially lytic enzyme activity) in mitotic 3T3 cells than in interphase cells.  相似文献   

15.
The fate of 125I-labeled transforming growth factor-beta (125I-TGF beta) after binding to its cells surface receptor has been investigated in BALB/c 3T3 mouse fibroblasts. Binding of 125I-TGF beta to cellular receptors at 4 degrees C is pH-sensitive, being markedly decreased at pH less than 6. Most (approximately 90%) of the 125I-TGF beta bound to cells at 4 degrees C can be removed by a brief treatment with acidic medium but is converted into an acid-resistant state rapidly after shifting the cells to 37 degrees C. Cell-bound 125I-TGF beta is degraded at 37 degrees C and the degradation products are released into the medium. The lysosomotropic bases chloroquine, methylamine, and ammonium and the carboxylic ionophore monensin inhibit the degradation and release of 125I-TGF beta from the cells. Cells allowed to accumulate 125I-TGF beta intracellularly by the action of chloroquine or monensin were treated with the bifunctional agent disuccinimidyl suberate in the presence of detergent Triton X-100; this treatment caused the cross-linking of internalized 125I-TGF beta with the 280-kilodalton TGF beta receptor component. Under conditions in which sustained binding and degradation of saturating 125I-TGF beta concentrations occurs, there is no marked decrease in the binding capacity of the cells even when protein synthesis is blocked with cycloheximide. These results indicate that after TGF beta binding the TGF beta:receptor complex becomes rapidly internalized and that TGF beta is directed towards lysosomes where it is degraded and released. However, the cell surface is replenished with TGF beta receptors recycled after internalization or supplied by a large intracellular pool.  相似文献   

16.
Pseudomonas aeruginosa exotoxin A (PEA) causes T cell- and Kupffer cell (KC)-dependent liver injury in mice. TNF-alpha as well as IL-18 and perforin are important mediators of liver damage following PEA injection. In this study, we focus on the role of NK and NKT cells in PEA-induced liver toxicity. Depletion of both NK and NKT cells by injection of anti-NK1.1 Ab as well as depletion of NK cells alone by anti-asialo GM1 Ab protected mice from PEA-induced hepatotoxicity, whereas mice lacking only NKT cells were susceptible. Additionally, we observed infiltration of NK cells, T cells, and neutrophils into liver parenchyma after injection of PEA. The number of NKT cells, however, remained unchanged. The increase in intrahepatic NK cells depended on KCs and the TNF-alpha-dependent up-regulation of the adhesion molecule VCAM-1 in the liver, but not on NKT cells. PEA also augmented the cytotoxicity of hepatic NK cells against typical NK target cells (YAC-1 cells). This effect depended on KCs, but not on TNF-alpha or NKT cells. Furthermore, only weak expression of MHC class I was detected on hepatocytes, which was further down-regulated in PEA-treated mice. This could explain the susceptibility of hepatocytes to NK cell cytolytic activity in this model. Our results demonstrate that NK cells, activated and recruited independently of NKT cells, contribute to PEA-induced T cell-dependent liver injury in mice.  相似文献   

17.
1. Variant baby-hamster kidney (BHK) cell lines were isolated that grow in the presence of high concentrations of ricin, the toxic lectin of castor beans (Ricinus communis). The variant lines were independently derived from several cultures of normal BHK cells which had been exposed to the mutagen, methyl-N-nitro-N-nitrosoguanidine, before selection by ricin. 2. The cell lines maintain a high degree of resistance to ricin after growth in lectin-free medium for prolonged periods and therefore exhibit stable phenotypes that are different from normal BHK cells. 3. A preliminary classification of the phenotypes was made. Several cell lines bind normal amounts of 125I-labelled ricin, whereas other bind the lectin poorly. 4. A loss of surface receptors for two other lectins, R. communis RCA and Axinella polyploides, which have specificities similar to ricin, was also found in some but not all of the cell lines showing decreased surface concentrations of ricin receptors. 5. The binding to the ricin-resistant cells of lectins of different sugar specificity, namely Lens culinaris lectin and concanavalin A, was similar to, or higher than, to normal BHK cells. 6. Several of the ricin-resistant cell lines were shown to be cross-resistant to the weak cytotoxicity of Phaseolus vulgaris lectin. By contrast, some cell lines were more sensitive to concanavalin A than were normal BHK cells.  相似文献   

18.
The treatment of H4-IIE cells (an immortalised liver cell line derived from the Reuber rat hepatoma) with thapsigargin, 2, 5-di-(tert-butyl)-1,4-benzohydroquinone, cyclopiazonic acid, or pretreatment with EGTA, stimulated Ca(2+) inflow (assayed using intracellular fluo-3 and a Ca(2+) add-back protocol). No stimulation of Mn(2+) inflow by thapsigargin was detected. Thapsigargin-stimulated Ca(2+) inflow was inhibited by Gd(3+) (maximal inhibition at 2 microM Gd(3+)), the imidazole derivative SK&F 96365, and by relatively high concentrations of the voltage-operated Ca(2+) channel antagonists, verapamil, nifedipine, nicardipine and the novel dihydropyridine analogues AN406 and AN1043. The calmodulin antagonists W7, W13 and calmidazolium also inhibited thapsigargin-induced Ca(2+) inflow and release of Ca(2+) from intracellular stores. No inhibition of either Ca(2+) inflow or Ca(2+) release was observed with calmodulin antagonist KN62. Substantial inhibition of Ca(2+) inflow by calmidazolium was only observed when the inhibitor was added before thapsigargin. Pretreatment of H4-IIE cells with pertussis toxin, or treatment with brefeldin A, did not inhibit thapsigargin-stimulated Ca(2+) inflow. Compared with freshly isolated rat hepatocytes, H4-IIE cells exhibited a more diffuse actin cytoskeleton, and a more granular arrangement of the endoplasmic reticulum (ER). In contrast to freshly isolated hepatocytes, the arrangement of the ER in H4-IIE cells was not affected by pertussis toxin treatment. Western blot analysis of lysates of freshly isolated rat hepatocytes revealed two forms of G(i2(alpha)) with apparent molecular weights of 41 and 43 kDa. Analysis of H4-IIE cell lysates showed only the 41 kDa form of G(i2(alpha)) and substantially less total G(i2(alpha)) than that present in rat hepatocytes. It is concluded that H4-IIE cells possess store-operated Ca(2+) channels which do not require calmodulin for activation and exhibit properties similar to those in freshly isolated rat hepatocytes, including susceptibility to inhibition by relatively high concentrations of voltage-operated Ca(2+) channel antagonists. In contrast to rat hepatocytes, SOCs in H4-IIE cells do not require G(i2(alpha)) for activation. Possible explanations for differences in the requirement for G(i2(alpha)) in the activation of Ca(2+) inflow are briefly discussed.  相似文献   

19.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

20.
The incorporation of labeled precursors into the deoxyribonucleic acid, ribonucleic acid (RNA), proteins, and phospholipids of Escherichia coli cultured in the presence of phenethyl alcohol (PEA) was determined. PEA inhibited the uptake of labeled uracil to the same extent in cells exhibiting relaxed and stringent control of RNA synthesis. This indicates that PEA does not primarily affect amino acid synthesis or activation. Uptake of labeled acetate into the phospholipid fraction was more sensitive to inhibition by low concentrations of PEA than was the uptake of labeled precursors into the macromolecules. Thymine starvation or the addition of nalidixic acid (10 mug/ml) had no effect on acetate incorporation. Chloramphenicol (25 mug/ml) was a much less effective inhibitor of acetate incorporation than was PEA. The distribution of labeled acetate incorporated into phospholipids was markedly affected by the presence of PEA. The uptake of acetate into phosphatidylethanolamine and phosphatidylglycerol was inhibited, whereas the uptake of acetate into the cardiolipin fraction was unaffected. Since acetate incorporation into phospholipid was quite sensitive to PEA, we suggest that the PEA-sensitive component required for the initiation of replication may be a phospholipid(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号