首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

2.
Grazing and growth of Pfiesteria piscicida (Pfiest) were investigated using batch and cyclostat cultures with Rhodomonas sp. (Rhod) as prey. Observed maximum growth rates (1.4 d?1) and population densities (2 × 105 cells·mL?1) corresponded to values predicted by Monod functions (1.76 d?1; 1.4 × 105 cells·mL?1). In batch cultures under a range of prey‐to‐predator ratios (0.1:1 to 180:1) and prey concentrations (1000–71,000 cells·mL?1), Rhodomonas sp. was always depleted rapidly and P. piscicida concentrations increased briefly. The rate of Rhodomonas sp. depletion and the magnitude of P. piscicida population maxima depended on the prey‐to‐predator ratio and prey concentration. Starvation resulted in cell cycle arrest at G1 and G2+M and ultimately the demise of both P. piscicida and Rhodomonas sp. populations, demonstrating the dependence of P. piscicida on the supply of appropriate prey. The depletion of Rhodomonas sp. populations could be attributed directly to grazing, because P. piscicida did not exert detectable inhibitory effects on the growth of Rhodomonas sp. but grazed intensely, with maximum grazing rates>10 Rhod·Pfiest?1·d?1 and with no apparent threshold prey abundance for grazing. The results suggest that 1) the abundance of appropriate prey may be an important factor regulating P. piscicida abundance in nature, 2) P. piscicida may control prey population, and 3) high growth and grazing potentials of P. piscicida along with cell cycle arrest may confer survival advantages.  相似文献   

3.
The domoic acid-producing diatom Nitzschia pungens Grunow f. multiseries Hasle, which is responsible for amnesic shellfish poisonings in Prince Edward Island, Canada, underwent gametogenesis when senescent cells (i.e. in stationary growth phase for more than 290 days) were subcultured into fresh FE medium and light intensity was increased from 33 to 530 μE · m?2· s?1. The number of gametes produced varied with the salinity of the medium, with a maximum at 23.5‰. Cells in the exponential growth phase (0.8 div · d?1) did not produce gametes, nor did senescent cells when transferred without change in light intensity. Anisogamous gametes, probably haploid, were isolated by combining conventional microscopy with flow cytometry. Zygotes resulting from syngamy yielded cigar-shaped naviculoid cells, morphologically different from parent cells (heteromorphism). These cells, with a division rate of 1.9 div · d?1, could serve as a seed population and explain the origin and rapid progression of the toxic blooms of red-water proportions that have been a public health problem in Eastern Canada. Production of domoic acid by postexponential and moribund cells but not by gametes, zygotes, or immediately resulting cells, provides an insight into the dependence of toxicity on the developmental history of this diatom.  相似文献   

4.
A population of Laminaria longicruris de la Pylaie was followed for a year at Bic Island, Quebec, Canada where nutrient levels in the seawater were elevated throughout the year. Tagged kelp were measured each month for growth and analyzed for alginic acid, laminaran, mannitol, carbon, nitrogen, and nitrate. Maximum growth (3.5 cm · d?1) was observed in June, and minimal growth (0.18 cm · d?1) from December to February, when ice cover limited light levels. No reserves of carbon or nitrate were formed. Laminaran levels remained below 2.7% dry weight while tissue nitrate did not exceed 0.75 μmol · g?1 dry weight. Total carbon produced per plant was 40 g C · yr?1. Nutrient availability enables the kelp to take advantage of summer light and temperature conditions to grow rapidly.  相似文献   

5.
Although the spectral quality of light in the ocean varies considerably with depth, the effect of light quality on different physiological processes in marine phytoplankton remains largely unknown. In cases where experiments are performed under full spectral irradiance, the meaning of these experiments in situ is thus unclear. In this study, we determined whether variations in spectral quality affected the sinking rates of marine diatoms. Semicontinuous batch cultures of Thalassiosira weissflogii (Gru.) Fryxell et Hasle and Ditylum brightwellii (t. West) Grunow in Van Huerk were grown under continuous red, white, or blue light. For T. weissflogii, sinking rates (SETCOL method) were twice as high (~0.2 m·d?1)for cells grown under red light as for cells grown under white or blue light (~0.08 m·d?1), but there were no significant differences in carbohydrate content (~105 fg·μm?3) or silica content (~ 17 fg·μ?3) to account for the difference in sinking rates. Thalassiosira weissflogii grown under blue light was significantly smaller (495 μm3) than cells grown under red light (661 μm3), which could contribute to its reduced sinking rate. However, cells grown under white light were similar in size to those grown under red light but had sinking rates not different from those of cells grown under blue light, indicating the involvement of factors other than size. There were no significant differences in sinking rate (~0.054 m·d?1) or silica content (~20 fg·μm?3) in D. brightwellii grown under red, white, or blue light, but cells grown under red light were significantly (20%) larger and contained significantly (20%) more carbohydrate per μm3 than cells grown under white or blue light. Spectral quality had no consistent effect on sinking rate, biochemical composition (carbohydrate or silica content), or cell volume in the two diatoms studied. The similarity in sinking rate of cells grown under white light compared to those grown under blue light supports the ecological validity of sinking rate studies done under white light.  相似文献   

6.
The seaweed Ulva lactuca L. was spray cultured by mariculture effluents in a mattress‐like layer, held in air on slanted boards by plastic netting. Air‐agitated seaweed suspension tanks were the reference. Growth rate, yield, and ammonia‐N removal rate were 11.8% · d?1, 171 g fresh weight (fwt) · m?2 · d?1, and 5 g N · m?2 · d?1, respectively, by the spray‐cultured U. lactuca, and 16.9% · d?1, 283 g fwt · m?2 · d?1, and 7 g N · m?2 · d?1, respectively, by the tank U. lactuca. Biomass protein content was similar in both treatments. Dissolved oxygen in the fishpond effluent water was raised by >3 mg · L?1 and pH by up to half a unit, upon passage through both culture systems. The data suggest that spray‐irrigation culture of U. lactuca in this simple green‐mattress‐like system supplies the seaweed all it needs to grow and biofilter at rates close to those in standard air‐agitated tank culture.  相似文献   

7.
Gymnodinium smaydae is one of the fastest growing dinoflagellates. However, its population dynamics are affected by both growth and mortality due to predation. Thus, feeding by common heterotrophic dinoflagellates Gyrodinium dominans , Gyrodinium moestrupii , Oblea rotunda , Oxyrrhis marina , and Polykrikos kofoidii , and the naked ciliate Pelagostrobilidium sp. on G. smaydae was investigated in the laboratory. Furthermore, growth and ingestion rates of O. marina , G. dominans , and Pelagostrobilidium sp. on G. smaydae in response to prey concentration were also determined. Oxyrrhis marina , G. dominans , G. moestrupii , and Pelagostrobilidium sp. were able to feed on G. smaydae , but P. kofoidii and O. rotunda did not feed on this dinoflagellate. The maximum growth rate of O. marina on G. smaydae was 0.411 per day. However, G. smaydae did not support the positive growth of Pelagostrobilidium sp. The maximum ingestion rates of O. marina and Pelagostrobilidium sp. on G. smaydae were 0.27 and 6.91 ng C · predator?1 · d?1, respectively. At the given mean prey concentrations, the highest growth and ingestion rates of G. dominans on G. smaydae were 0.114 per day and 0.04 ng C · predator?1 · d?1, respectively. The maximum growth and ingestion rates of O. marina on G. smaydae are lower than those on most of the other algal prey species. Therefore, O. marina may be an effective predator of G. smaydae , but G. smaydae may not be the preferred prey for supporting high growth of the predator in comparison to other species as inferred from a literature survey.  相似文献   

8.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

9.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

10.
A strong biomass increase of two Anabaena species was observed in natural plankton community enclosed into nine large mesocosms (51 m3) and manipulated with mineral nutrients and an organic carbon source during a 3‐week period in the coastal Baltic Sea. The water column and settled material from the bottom of the mesocosms were sampled at 2‐day intervals. Planktonic populations of Anabaena lemmermannii Richter and A. cylindrica Lemmermann and sedimentation rates of akinetes to the bottom were quantified. Comparing mesocosms with artificially induced nitrogen and phosphorus limitation, we found that during the third week of the experiment, the population size of A. lemmermannii was clearly higher in nitrogen‐limited units (by a factor of 2.4), whereas the production rate of akinetes was higher in the phosphorus‐limited units (by a factor of 2.5). Input of freshly produced A. lemmermannii akinetes to the benthos was on average 15 × 106 and 6 × 106 cells· m?2·d?1 in the P? and N? limited mesocosms, respectively. Our estimates of specific akinete production rate of A. lemmermannii in P? and N? limited mesocosms revealed an even larger divergence (a factor of 5.5), being on average 2.4 and 0.4 akinetes·10?3 vegetative cells?1·d?1, respectively. The phosphorus addition effectively reduced akinete production of A. lemmermannii. Differences in the nutrient manipulation had no apparent effect on the biomass and akinete production of A. cylindrica. The akinete production pattern of A. cylindrica revealed a 1‐week delay compared with the vegetative population peak, whereas such a delay was not obvious in A. lemmermannii.  相似文献   

11.
Recently, it was observed that the freely chosen pedal rate of elite cyclists was significantly lower at 06:00 than at 18:00 h, and that ankle kinematics during cycling exhibits diurnal variation. The modification of the pedaling technique and pedal rate observed throughout the day could be brought about to limit the effect of diurnal variation on physiological variables. Imposing a pedal rate should limit the subject's possibility of adaptation and clarify the influence of time of day on physiological variables. The purpose of this study was to determine whether diurnal variation in cardiorespiratory variables depends on pedal rate. Ten male cyclists performed a submaximal 15 min exercise on a cycle ergometer (50% Wmax). Five test sessions were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. The exercise bout was divided into three equivalent 5 min periods during which different pedal rates were imposed (70 rev · min?1, 90 rev · min?1 and 120 rev · min?1). No significant diurnal variation was observed in heart rate and oxygen consumption, whatever the pedal rate. A significant diurnal variation was observed in minute ventilation (p=0.01). In addition, the amplitude of the diurnal variation in minute ventilation depended on pedal rate: the higher the pedal rate, the greater the amplitude of its diurnal variation (p=0.03). The increase of minute ventilation throughout the day is mainly due to variation in breath frequency (p=0.01)—the diurnal variation of tidal volume (all pedal rate conditions taken together) being non‐significant—but the effect of pedal rate×time of day interaction on minute ventilation specific to the higher pedal rate conditions (p=0.03) can only be explained by the increase of tidal volume throughout the day. Even though an influence of pedal rate on diurnal rhythms in overall physiological variables was not also evidenced, high pedal rate should have been imposed when diurnal variations of physiological variables in cycling were studied.  相似文献   

12.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   

13.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

14.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

15.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

16.
The relative importance of respiration and organic carbon release to the efficiency of carbon specific growth of Skeletonema costatum (Grev.) Clave was evaluated over a light range from 1500–15 μE · m?2· s?1. Net growth efficiency ranged from 0.45–0.69 with a maximum at 130 μE · m?2· s?1. Respiration was 93% or more of the variations in growth efficiency. Organic carbon release ranged from 0–7% of gross production and increased with light intensity. Carbon specific particulate production was a hyperbolic function of incident light intensity and was related exponentially to particulate carbon production per unit chlorophyll a. Full sunlight conditions, 1500 μE · m?2· s?1, did not induce photoinhibition of gross production. Variations in the efficiency of growth of S. costatum were minimized over a wide range of light intensities mainly because of variations in cellular pigments which permitted the efficient utilization of available light energy, and a reduction in the losses of carbon which increases the growth rate, possibly as a consequence of the recycling of respired carbon within the cell.  相似文献   

17.
Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46·4 cm s?1 and 44·6 relative body lengths (LB) s?1] and prolonged (maximum 15·4 cm s?1, 15·6 LB s?1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0·1 cm s?1, 0·3 LB s?1) and prolonged swimming speeds (minimum 1·1 cm s?1, 1·0 LB s?1). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life‐history strategies, with well‐developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life‐history strategies, with poorly developed larvae at hatch.  相似文献   

18.
Many migratory water birds are known to feed both during day and night outside the breeding season, but the underlying factors and mechanisms determining this foraging pattern are poorly understood. We addressed this topic by comparing both diurnal and nocturnal foraging activity (FA) and metabolizable energy intake rate (MEIR) in migrating black‐tailed godwits Limosa limosa staging in two different habitats, rice fields and coastal salt pans. Black‐tailed godwits staging in rice fields during pre‐breeding migration fed on rice seeds, and only foraged during the daylight period (FA: 81.89 ± 3.03%; MEIR: 1.15 ± 0.03 kJ · min?1). Daily energy consumption (DEC) of godwits relying on seeds was enough to meet the theoretical daily energy expenditure (DEE). In contrast, black‐tailed godwits staging in salt pans during post‐breeding migration fed on chironomid larvae, and they foraged during both daylight (FA: 67.36 ± 4.30%; MEIR: 0.27 ± 0.01 kJ · min?1) and darkness (FA: 69.89 ± 6.89%; MEIR: 0.26 ± 0.00 kJ · min?1). Nocturnal energy intake contributed 31.7% to DEC, the latter being insufficient to fully meet DEE. Our findings give empirical support to the view that diurnal foraging is the norm in many migratory water birds outside the breeding season, and nocturnal foraging occurs when the daily energy requirements are not met during the daylight period, supporting the supplementary food hypothesis.  相似文献   

19.
Diurnal changes in effective yield (ΔF:Fm′), rapid light curves (RLCs), and induction/dark recovery time series were measured on individual cells of the giant diatom Ethmodiscus Castracane using active fluorescence (pulse amplitude modulation fluorometry). Unlike the co‐occurring diatom Hemiaulus and bulk phytoplankton, there was no observable diurnal down‐regulation of yield or relative electron transport rates in Ethmodiscus. Yields were constant at or near maximum values (0.7–0.8). Increases in ΔF:Fm′ during the initial actinic levels are consistent with dark nonphotochemical quenching mechanisms. Sustained actinic illumination (660 μmol photon·m?2·s?1) resulted in a ΔF:Fm′ of 0.2–0.3, but rapid recovery to near‐maximum values occurred in subsequent dark periods. Such recovery occurred even after exposure to full sunlight for 28 min, but not at 60 min. Thus, the lack of diurnal down‐regulation in Ethmodiscus is apparent, not real, and is an artifact of the time scale of sample extraction from net tows. These positively buoyant cells showed no evidence of routine photodamage, probably due to mixing and reduction in the average light exposure. The general patterns seen in RLCs from light‐and dark‐adapted higher plants are significantly different from those observed in Ethmodiscus. These results suggest that active fluorescence characteristics require careful examination to differentiate habitat‐ and taxon‐specific characteristics from light‐history effects. It is unclear whether the rapid recovery seen in Ethmodiscus is unique. The differences seen between Hemiaulus and Ethmodiscus from the same samples suggest that changes in community yield values measured in countertop systems could be the result of species replacement in addition to experimental or environmental perturbations.  相似文献   

20.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号