首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Two pairs of stable diploid clones were obtained as aberrant forms among F1 progeny of an intragroup (intraspecific) cross between R-11-4 (mating type +) and M-16-4b (mating type -) of Group A of Closterium ehrenbergii Menegh. Each pair was derived from the two germination products of a single zygospore, and both clones were mating type minus. The cell size range of these four diploid minus clones was considerably above that of normal (haploid) Group A clones. Chromosome counts at the second meiotic metaphase indicated that these clones were diploid with approximately 200 chromosomes, which was double the number for normal Group A clones. Diploid minus clones conjugated normally with any haploid Group A plus clones, and yielded many triploid zygospores. Triploid zygospores germinated normally as did intragroup diploid zygospores. In metaphase I preparations, only bivalents were observed except on a few occasions where some uni- and multivalents were also detected. Viability of F1 progeny from triploid zygospores (55–74%) was somewhat lower than from diploid zygospores of Japanese Group A populations (65–90%), but higher than intergroup (interspecific) hybrid zygospores from Groups A, B and H (0–12%). In addition to lower viability, some F1 progeny from triploid zygospores exhibited slow vegetative growth. Almost all pairs of F1 clones from single triploid zygospores were of opposite mating type, similar to normal diploid zygospores of the intragroup cross. Morphological variability of F1 progeny of triploid zygospores was great. The apparently normal meiosis of triploid zygospores and the high viability of F1 progeny suggested that the genome of Group A contains several sets of chromosome complements with mechanisms by which bivalents are regularly formed in the first meiotic division.  相似文献   

2.
Sexual isolation between Groups A and B of Closterium ehrenbergii, two closely related species, was studied by a multiple-choice mating method, as well as the nochoice mating method which has been used in previous work on microalgae. Time lapse photomicrographs and the difference in cell shape and size between the two mating groups allowed identification of a given cell in the mixture as either Group A or B, even when certain morphological changes occurred during the several day culture required for sexual induction. When plus and minus mating types of Group A were mixed with those of Group B (multiplechoice mating), no intergroup hybrid zygospores were formed. However, many intragroup zygospores of either Group A or B were formed. When one plus strain of Group A was mixed with one minus strain of Group B or when one plus strain of Group B was mixed with one minus strain of Group A (no-choice mating), intergroup sexual interactions took place resulting in a small number of hybrid zygospores; however, the process took much longer than intragroup sexual interactions. It was also shown that cell size difference itself hardly affects sexual interactions between haploid and autodiploid strains of Group A. It is suggested that sexual isolation between Groups A and B would be complete in nature, although they may interact sexually in the laboratory.  相似文献   

3.
Mating type-plus (mt+; NIES-228) cells of Closterium ehrenbergii undergo a division to form gamete-shaped cells. This cell division is induced by a substance produced by mating type-minus (mt?; NIES-229) cells. Light and the presence of mt+ cells enhanced production of the substance. The active substance is heat labile and has an apparent molecular mass of 20 kDa. From these results, we conclude that the substance is a novel, proteinaceous sexual pheromone involved in reproduction of Closterium ehrenbergii.  相似文献   

4.
Homozygous mt?/mt? diploid clones of the Closterium ehrenbergii Menegh. ex Ralfs species complex were obtained by hypertonic treatment from minus vegetative cells, and mating type segregation ratios in the F1 progeny of “triploid” zygospores between wild type mt+ haploid and mt?/mt? homozygous diploui were analyzed. The ratio of plus to minus individuals was 1:4.8, and the ratio of the pairs of opposite mating types to those of minus mating type was 1:2.1. The results clearly show that mt? is dominant to mt+ and that the mating type inheritance in these zygospores follows the triploid-like pattern. The validity of our assumption that the two mating types are determined by one genetic factor (mt? allele dominant) was confirmed in B1 progeny analyses as well. The results suggest that this sex determining mechanism is working effectively in the C. ehrenbergii species complex, in which several biological species have evolved through polyploidization.  相似文献   

5.
6.
Sexual reproduction in C. moniliferum is described for the first time. The morphology of conjugation is quite like that of C. ehrenbergii. Homothallic strains of both species usually produce single zygospores between daughter cells that have just divided. However, 2 homothallic clones of C. moniliferum form twin zygospores between conjugants which have paired before division and conjugation. This has not been observed in C. ehrenbergii. Heterothallic strains of both species form twin zygospores in the same manner. Heterotfiallisrn seems a well-established feature in both species. Germination and the survival of 2 products of meiosis arc typical of other desmids which have been investigated.  相似文献   

7.
The ranges of morphological variabilities in vegetative cells of three closely related mating groups of Closterium ehrenbergii Meneghini were statistically analyzed, having been grown under standard and uniform culture conditions, using Group A clones from Japan and Australia, Group B clones from Japan and Taiwan and Group H clones from Nepal. Significant differences in the morphological characters were not recognized between the two complementary mating types in any of the three groups. It has been shown that cells of Group A are smallest (mean width 50 μm and mean length 250 μm) and cells of Group B are largest (mean width 67 μm and mean length 404 μm), while cells of Group H are intermediate (mean width 57 μm and mean length 333 μm). There are considerable differences in the mean cell size between the three mating groups, although some intergrading clones were recognized. Degrees of the intergrading overlap were shown to be small between the sympatric groups (A and B) and large between the two pairs of allopatric groups (A and H & B and H). It has been shown that cells of Group A are shorter and much more curved than cells of the other two mating groups. Cells of Groups B and H are slender and less curved. It has also been shown that the ranges in cell size of each mating group are smaller than those currently accepted for C. ehrenbergii.  相似文献   

8.
Optimum conditions for conjugation in the heterothallic saccoderm desmid Mesotaenium kramstai Lemmer-mann have been determined. In culture, cells acquired the ability to form gamete pairs just prior to the onset of stationary phase after sufficient nitrate had been depleted from the medium. The appearance of potential gametes was delayed by increasing the concentration of KNO3 When cells of both mating types were harvested from 15 to 18 day old cultures, washed, resuspended in fresh medium, and mixed, approximately 50 percent of the cells paired (measured three days after mixing) in a medium containing 0.13 mM or less KNO3. At greater concentrations, fewer pairs formed; no pairs formed in medium containing 0.5 mM KNO3. Conjugation was not inhibited by other macronutrients. Calcium and magnesium were essential for maximum conjugation. Although Ca2+ and Mg2+ contentrations of 0.05 mM and 0. I mM, respectively, were sufficient for optimum growth, maximum conjugation required more than 10 times these values. Few gamete pairs formed when either Ca2+ or Mg2+ was omitted from the medium, no pairing occurred when both Ca2+ and Mg2+ were omitted.  相似文献   

9.
Members of the Closterium peracerosum–strigosum–littorale (C. psl.) complex are unicellular charophycean algae in which there are two modes of zygospore formation, heterothallic and homothallic. A homothallic strain of Closterium (designation, kodama20) was isolated from a Japanese rice paddy field. Based on alignment of the 1506 group‐I introns, which interrupt nuclear SSU rDNAs, homothallic kodama20 is most closely related to the heterothallic mating group II‐B, which is partially sexually isolated from group II‐A. Time‐lapse photography of the conjugation process in kodama20 revealed that most of the observed zygospores originated from one vegetative cell. The sexual conjugation process consisted of five stages: (1) cell division resulting in the formation of two sister gametangial cells from one vegetative cell, (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another adjoined individual), (3) formation of conjugation papillae, (4) release of gametic protoplasts from both members of a pair, and (5) formation of the zygospore by protoplast fusion. For conjugation to progress, the cell density and light condition in the culture was critical. We suggested the presence of a conjugation promotion factor.  相似文献   

10.
The Closterium peracerosum–strigosum–littorale (C. psl.) complex consists of unicellular algae and is known to be composed of several reproductively isolated mating groups of heterothallic strains. Group I‐E is completely isolated from mating groups II‐A and II‐B, groups II‐A and II‐B are partially isolated from each other, and only mating‐type plus (mt+) cells of group II‐A and mating‐type minus (mt?) cells of group II‐B form zygotes. Based on the alignment of 1506 group I introns, significant phylogenetic relationships were observed among mating groups II‐A and II‐B, while mating group I‐E was distant from groups II‐A and II‐B. Sexual cell division in both mating‐type cells of group II‐A was stimulated in conditioned media in which cells of group II‐B had been cultured. When mt? cells of group II‐B were stimulated in conditioned medium derived from group II‐A, mt+ cells of group II‐B did not respond to the conditioned medium. Conditioned media derived from group I‐E did not exhibit sexual cell division (SCD)–inducing activity against any strain except those within its own group. From the alignment of deduced amino acid sequences from orthologous protoplast‐release‐inducing protein (PR‐IP) Inducer genes, we detected a significant similarity among groups II‐A and II‐B, and mating group I‐E had low similarity to other mating groups. The existing degree of reproductive isolation can be partially explained by differences in molecular structures and physiological activities of sex pheromones of these heterothallic mating groups.  相似文献   

11.
DNA content of the nucleus in the placoderm desmid, Closterium ehrenbergii Meneghini was measured throughout the life cycle by epifluorescence microspectrophotometry after DNA specific dye [4′,6-diamidino-2-phenylindol (DAPI)] staining. Postulating a mean DNA content of gamete nuclei as 1C, the nucleus of a newly divided vegetative cell was 2C. Most vegetative cells in the stage of exponential growth had a DNA content from 2C to 4C, while most in stationary phase, with the highest frequency of zygote formation, were 2C. They became pre-gametes (2C) upon mixing two heterothallic strains. Four gametes were made by a DNA reduction division of each pre-gamete cell. Therefore, there was a nonmeiotic DNA reduction stage by one half. During germination, the zygote underwent meiosis to produce two gones, each of which contained one surviving nucleus (large nucleus) and one degenerating nucleus (small nucleus). The DNA content of these four nuclei was 1C basically. The DNA of the surviving nucleus duplicated to 2C and further quadruplicated to 4C without cell or nuclear division. These two 4C gones had different cell morphology from ordinary vegetative cells. After the first cell division following meiosis, each gone produced two vegetative cells in which the DNA content became 2C to 4C again.  相似文献   

12.
Sexual reproduction was induced in the dinoflagellate Peridinium gatunense Nygaard when exponentially growing cells were inoculated into nitrogen deficient medium. Small thecate cells produced by division of vegetative cells then acted as gametes. Thecae of fusing gametes broke in the girdle region and were lost. Zygotes thus formed remained motile 3–5 days during which time they enlarged slightly with the newly formed theca becoming warty. Three to 5 days following plasmogamy the zygote became nonmotile, the protoplast contracted, and the cell wall thickened. Hypnozygotes with 4 nuclei were observed ca. 10–12 h following formation. Meiosis was inferred. Hypnozygotes germinated within 12 h of formation producing 2 vegetative cells which divided within a 24 h period. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements other than N were unsuccessful.  相似文献   

13.
Closterium strains obtained from Japan ( NIES-64 and -65 ) and Nepal ( NIES-67 and -68 ) have been classified as the same taxonomic species; however, they are sexually isolated from each other. When NIES-64 and -65 cells were separately incubated in a medium in which both strains had previously been cultured together, release of protoplasts from both strains was observed. We suggest that factors responsible for the release of protoplasts from cells of both NIES-64 and -65 are produced in a mixed culture of these cells and function during conjugation. These factors, however, had no effect on the release of protoplasts from cells of strains NIFS-67 or -68. Alternatively, a protein that is responsible for the release of protoplasts from cells of NIES-68, called the protoplast-release-inducing protein ( PR-IP ), had no effect on the release of protoplasts from cells of strains NIES-64 or -65. When the media obtained from the culture of NIES-64 and -65 cells at various mixing ratios were analyzed by western blotting with antiserum to a 42-kDa subunit of PR-IP, no cross reaction was detected. In Southern hybridization analysis, no hybridizing band was observed when genomic DNAs of NIES-64 and -65 cells were probed with cDNAs encoding the two subunits of PR-IP. We suggest from these results that the factors responsible for the release of protoplasts from NIES-64 and -65 cells are not structurally similar to PR-IP. It is known that the release of PR-IP from NIES-67 cells can be induced by the action of another sex pheromone ( PR-IP inducer ) which is released by NIES-68 cells. In contrast, no protoplast-release-inducing activity was observed from either NIES-64 or -65 in a culture medium conditioned by opposite strains. We suggest that the conjugation systems employed by strains NIES-64/ NIES-65 and strains NIES-67 /NIES-68 differ, and we propose a possible mechanism of sexual isolation between these biological species .  相似文献   

14.
Sexual reproduction was induced in the dinoflagellate Peridinium willei Huitfeld-Kass when exponentially growing cells were inoculated into nitrogen deficient medium. Small, naked vegetative cells produced by division of thecate cells acted as gametes. The zygote remained motile 13–14 days, during which time it enlarged and the theca formed became warty. Fourteen to 15 days following plasmogamy the zygote was nonmotile with the protoplast contracted. A large red oil droplet appeared and the wall thickened, becoming chitinized. Hypnozygotes with 4 nuclei were observed 7–8 wk following formation. Meiosis was inferred. The hypnozygote germinated, within 8 wk producing one post-zygotic cell retaining the red oil droplet. This cell divided within 24 h into 2 daughter cells each with a prominent red oil droplet. These daughter cells divided after 2 to 3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements were unsuccessful.  相似文献   

15.
We observed sexual reproduction in a clonal culture of Stephanodiscus niagarae Ehrenb. and used light and scanning electron microscopy to absent flagellated male cells, auxospore growth, initial valve structure and production, and subsequent daughter cell division. Free auxospores were spherical and nonsiliceous throughout growth, producing hemispherical initial valves devoid of spines and with nonfasciculate striae. Pregametangial cells averaged 43% of the diameter of the daughter cell population and were 1/9 the biovolume of initial, cells. This paper is the first confirmed report of sexual reproduction in S. niagarae, although it appears that specimens of Actinocyclus niagarae H. L. Smith, described from Lake Erie in 1878, are actually initial valves of S. niagarae.  相似文献   

16.
A biologically active glycoprotein (protoplast-release-inducing protein; PR-IP), which induces the release of gametic protoplasts from mating type minus (mt-) cells of the Closterium peracerosum-strigosum-littorale complex, was prepared from a medium in which mt- and mt+ cells had been previously incubated together. The process of PR-IP-inducing protoplast release was analyzed. Induction of protoplast release was dependent upon the duration of both PR-IP treatment and preincubation in nitrogen-deficient mating medium before PR-IP treatment. Low cell density in the preculture stage had a significant stimulative effect upon the induction of protoplast release. Light was necessary for protoplast release, especially just before PR-IP treatment. Chloramphenicol and 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) exerted inhibitory effects on protoplast release, especially when they were applied to the preculture stage but not when they were applied to the protoplast-releasing stage after the PR-IP treatment. We suggest that preculture at a low cell density under continuous light conditions that may cause metabolic changes in the chloroplast is a very important stage for gametic protoplast release in this Closterium.  相似文献   

17.
18.
Sexual cell division (SCD) that produces two gametangial cells from one vegetative mother cell is the first step observed morphologically in the sexual reproduction in the Closterium peracerosum–strigosum– littorale complex. SCD‐inducing activities specific for each mating‐type cells were detected in the medium in which both mating type cells has been cocultured. Mating‐type minus (mt ? ) cells released SCD‐inducing substance specific for mating‐type plus (mt + ) cells and were designated as SCD‐ inducing pheromone (IP)‐minus, whereas mt ? specific substances released from mt + cells were designated as SCD‐IP‐plus. Culture medium was subjected to gel filtration, and then SCD‐IP‐plus and SCD‐IP‐minus chemical were found to have the molecular masses of 90–100 kDa and 10–20 kDa, respectively. It was evident that light was imperative for this type of signaling. Gametangial cells of both mating types were obtained from vegetative cells by treatment with SCD‐IPs. Gametangial mt + cells showed high competency for conjugation with vegetative mt ? cells, whereas gametangial mt ? cells showed low competency for conjugation with vegetative mt + cells. These results indicate that SCD in both mating type cells is induced by high molecular weight sex pheromones and that the roles of gametangial cells in the process of conjugation differ by sex.  相似文献   

19.
Morphological details of asexual and sexual reproduction in Gonium Quadratum Pringsheim ex Nozaki (Goniaceae, Chlorophyta) were observed by light microscopy, based on clonal cultured materials originating from Nepal. In asexual reproduction, the alga exhibited two different patterns of cell cleavage during formation of 8-and 16-celled daughter colonies. Sexual reproduction was heterothallic and isogamous. The gametes bore a tubular mating structure (bilateral mating papilla) at the base of the flagella, and the papillae of the two gametes. The germinating zygote gave rise to four biflagellate gone cells joined in a colony (germ colony). Possible phylogenetic relationships within the Goniaceae at the species level are outlined, mainly on the basis of reproduction characteristics.  相似文献   

20.
Homothallic sexual reproduction and auxosporulation were studied in monoclonal cultures and seminatural populations of the freshwater epipelic diatom Navicula cryptocephala Kütz. Gametangia paired via the girdle, one gamete was formed per gametangium (and hence one zygote per pair of gametangia), and gamete fusion took place without the formation of any copulation envelope or copulation canal. Superfluous nuclei from meiosis survived unusually long, so that gametes and young zygotes were probably functionally polyploid; later, all but two haploid nuclei degenerated. Expanded auxospores had a swollen center, but during formation of the initial valves, the auxospore contracted away from the perizonium to produce linear‐lanceolate valves. The pattern of reproductive behavior found in N. cryptocephala can be classified as type IIA2a auxosporulation in Geitler's system. The same type of zygote and auxospore formation seen in clonal cultures was observed in seminatural material from four lakes in Scotland and the Czech Republic. Variation in nuclear structure and auxosporulation in the N. cryptocephala species complex is discussed, as is the evolution of type II auxosporulation (one zygote per pair of gametangia) from type I auxosporulation (two zygotes per pair). The penalty of smaller numbers of zygote produced in type II may be outweighed by formation of larger auxospores (prolonging the vegetative phase) or more vigorous auxospores. The variation present among members of the N. cryptocephala complex indicates that biogeographical analyses based on use of the name N. cryptocephala, as performed recently to support the ubiquity hypothesis of protist distributions, are almost meaningless.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号