首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中华绒螯蟹(Eriocheir sinensis)雄性生殖系统的组织学研究   总被引:16,自引:1,他引:15  
中华绒螯蟹雄性生殖系统的组织学研究表明:生精小管一侧为管壁上皮,另一侧为生发区,生殖细胞由生发区基底部同管腔增殖。输精管分为输精细管和贮精囊,管壁上皮具分泌功能,贮精囊有肌肉层。射精管壁肌肉层较厚,粘膜形成纵行皱襞。副性腺内壁为单层立方上皮。生殖系统发育有明显的季节性,8月开始发育加速,10月进入高峰,4月开始发育停滞。  相似文献   

2.
The morphology of the male reproductive system was studied in Cherax quadricarinatus. The testes and vasa deferentia were dissected, fixed, cut and stained. Testes appear as two parallel and opalescent strands; they present many testicular lobes, each lobe containing cells in the same stage of the spermatogenic cycle. A vas deferens arises from the external side of each testis and three parts were clearly distinguished: proximal vas deferens (PVD), middle vas deferens (MVD) and distal vas deferens (DVD). The PVD is opalescent and highly convoluted, the MVD is pale white in colour and convoluted, but wider in diameter than the PVD, while the DVD shows the widest diameter, is straight and is white in colour. A single‐layered epithelium is recognized in the vas deferens; with cylindrical cells in the PVD and cuboid cells in the MVD and DVD. The formation of the spermatophore starts at the PVD, while the secondary layer of the spermatophore seems to be added at the MVD. At the DVD, the highly coiled spermatophore is surrounded by the periodic acid Schiff‐positive sticky components of the secondary layer. Many aspects of spermatophore formation in C. quadricarinatus differ from those of other Astacida. The applied aspects of this study for aquaculture purposes are discussed.  相似文献   

3.
Our aim was to describe the reproductive system of males and the formation of sperm packages in the seminal receptacle (SR) of recently mated females of the arrow crab Stenorhynchus seticornis. The male reproductive system was analyzed, and was described using light microscopy and histological and histochemical methods. The first pair of gonopods was described by means of scanning electron microscopy. Additionally, the dehiscence of spermatophores was tested using samples obtained from the vas deferens of males and from the seminal receptacle of recently mated females. Testes were tubular type, and each vas deferens consisted of three regions: the anterior vas deferens (AVD), including a proximal portion that was filled with free spermatozoa and a distal portion contained developing spermatophores; the median vas deferens (MVD) that contained completely formed spermatophores; and the posterior vas deferens (PVD), which contained only granular secretions. The accessory gland, which was filled with secretions, was located in the transition region between the MVD and the PVD. The spermatophores from the MVD were of different sizes, and none of them showed dehiscence in seawater, whereas those spermatophores in contact with the seminal receptacle were immediately broken. The ultrastructure of the gonopods revealed the presence of denticles at the distal portion, which contribute to the mechanical rupture of the spermatophore wall during the transfer of sperm. The contents of the PVD and accessory gland of males are transferred together with the spermatophores, and are responsible for the secretions observed among the sperm packets in the SR of the female. We suggest that these secretions formed the layers found in the SR of recently mated females, and may play a role in sperm competition in arrow crabs.  相似文献   

4.
Accessory gland secretions of male insects have many important functions including the formation of spermatophores. We used light and electron microscopy to investigate the structure of the accessory glands and posterior vasa deferentia of the carabid beetle Pterostichus nigrita to try to determine where spermatophore material is produced. Each accessory gland and posterior vas deferens had an outer layer of longitudinal muscle, beneath which was a layer of connective tissue and a thin band of circular muscle, all of which surrounded a layer of epithelial cells lining the lumen of the ducts. Based on the ultrastructure of the epithelial cells, and their secretory products, we identified two epithelial cell types in each region (distal and proximal) of the accessory glands and four types in the posterior vas deferens. Most secretory products, which stained positively for proteins and some mucins, were released into the lumen of the ducts by apocrine secretion. The accessory glands produced one type of secretory product whereas in posterior vasa deferentia, four types of secretory products were found layered in the lumen. Our results suggest that most of the structural material used to construct a spermatophore is produced by the cells of the posterior vasa deferentia.  相似文献   

5.
López Greco, L.S. and Lo Nostro, F.L. 2007. Structural changes in the spermatophore of the freshwater ‘red claw’ crayfish Cherax quadricarinatus (Von Martens, 1898) (Decapoda, Parastacidae). —Acta Zoologica (Stockholm) 88 : 000–000 The structure of the spermatophore was studied in Cherax quadricarinatus. Pieces of the distal vas deferens and transferred spermatophore from the females were fixed, cut and stained. Within the distal vas deferens, the primary layer and the secondary layer of the spermatophore were distinguishable. In the latter, two components were detected: cytoplasmic droplets and a homogeneous matrix. During the first 10 minutes post‐extrusion the cytoplasmic droplets drastically changed from looking like ‘empty droplets’; at this time the spermatophore changed from a liquid stage to a sticky one. One hour after extrusion the spermatophore began to harden and within the first 24–48 h post‐mating it was a solid and intense white structure tightly attached to the female; after 72 h it acquired a softer aspect, completely dehiscing between 96 and 120 h post‐mating. Histologically, the primary layer maintained its integrity surrounding the spermatozoa while the secondary layer lost the cytoplasmic droplets. The spermatophore began to hydrate between 24 and 48 h and by 72–96 h many sections of the sperm cord began to coalesce. From 48 h post‐mating some fissures appeared within the matrix that enlarged between 72 and 120 h. We propose that both manipulation by the female and hydration are the mechanisms involved in the release of the spermatozoa from the spermatophore.  相似文献   

6.
Summary The male reproductive system of Labidocera aestiva produces a flask-shaped spermatophore connected to a chitin-like coupling apparatus. As immature spermatozoa leave the anterior region of the testis, they pass through the lumen of a long, sinuous duct composed of a ductus deferens and seminal vesicle. Ultrastructural examination of the ductus deferens reveals a highly glandular, columnar epithelium. The cells contain arrays of rough endoplasmic reticulum and abundant, well-developed Golgi complexes. This region produces and releases into the lumen, a flocculent substance and two granular secretions that constitute the seminal fluid. In its terminal part, the ductus deferens synthesizes another secretion that forms the spermatophore wall enclosing the spermatozoa and seminal fluid. Final synthesis of the spermatophore wall occurs within the thin-walled seminal vesicle, although this region functions primarily as a storage organ. Contiguous to the seminal vesicle is an elongate, highly glandular spermatophore sac. The chitin-like coupling apparatus, which functions to attach the spermatophore to the female, is formed in the anterior region of the sac by secretions from eight cell types. The posterior region of the sac stores the flask-shaped spermatophore and produces secretions that aid ejaculation of the entire spermatophore complex.Contribution No. 236, Harbor Branch Foundation, Inc.  相似文献   

7.
We investigated the morphology of spermatozoa, spermatophores and the anterior vas deferens (AVD) of the gecarcinucid freshwater crab Sundathelphusa philippina. The morphology of the acrosome (proportions, structure and arrangement of acrosomal layers) and the spermatophores complies with the known sperm and spermatophore morphology of the brachyuran family Gecarcinucidae. The sperm cells are packed within coenospermic spermatophores that are of a mucous type, lacking a complex spermatophore wall. Spermatophore formation takes place in the distal part of the AVD. The strongly proliferated inner epithelium of the vas deferens releases vesicles via apocrine secretion. These vesicles fuse with the incipient spermatophores that subsequently coalesce, thus forming the coenospermic aggregates that represent the mature spermatophores.  相似文献   

8.
The fine structure of the seminal vesicle and reproductive accessory glands was investigated in Bittacidae of Mecoptera using light and transmission electron microscopy. The male reproductive system of Bittacidae mainly consists of a pair of testes, a pair of vasa deferentia, and an ejaculatory sac. The vas deferens is greatly expanded for its middle and medio-posterior parts to form a well-developed seminal vesicle. The seminal vesicle is composed of layers of developed muscles and a mono-layered epithelium surrounding the small central lumen. The epithelium is rich in rough endoplasmic reticulum and mitochondria, and secretes vesicles and granules into the central lumen by merocrine mechanisms. A pair of elongate mesodermal accessory glands opens into the lateral side of the seminal vesicles. The accessory glands are similar to the seminal vesicle in structure, also consisting of layers of muscle fibres and a mono-layered elongated epithelium, the cells of which contain numerous cisterns of rough endoplasmic reticulum and mitochondria, and a few Golgi complexes. The epithelial cells of accessory glands extrude secretions via apocrine and merocrine processes. The seminal vesicles mainly serve the function of secretion rather than temporarily storing spermatozoa. The sperm instead are temporarily stored in the epididymis, the greatly coiled distal portion of the vas deferens.  相似文献   

9.
We described the ultrastructure and histochemistry of the reproductive system of five Callinectes species, and evaluate the seasonal variation in weight of the reproductive system and hepatopancreas by comparing annual changes of somatic indices. The somatic indices changed little throughout the year. In Callinectes, spermatogenesis occurs inside the lobular testes and, within each lobule, the cells are at the same developmental stage. Spermatogenesis and spermiogenesis follow the same development pattern in all Callinectes studied. Mature spermatozoa are released into the seminiferous ducts through the collecting ducts. Cells of the vas deferens are secretory as evidenced by rough endoplasmic reticulum, Golgi complex, and secretory vesicles that produce the seminal fluid. The anterior vas deferens shows two portions: proximal and distal. In proximal portion (AVDp), spermatozoa are clustered and embedded in an electron-dense, basophilic glycoproteinaceous secretion Type I. In the distal portion (AVDd), the spermatophore wall is formed by incorporation of a less electron-dense glycoproteinaceous secretion Type II. The secretion Type I change to an acid polysaccharide-rich matrix that separates the spermatophores from each other. The median vas deferens (MVD) stores the spermatophores and produces the granular glycoproteinaceous seminal fluid. The posterior vas deferens (PVD) has few spermatophores. Its epithelium has many mitochondria and the PVD seminal fluid changes into a liquid and homogeneous glycoprotein. Many outpocketings in the PVD and MVD help to increase the fluid production. Overall, the reproductive pattern of Callinectes is similar to other species that produce sperm plugs. The secretions of AVD, MVD, and PVD are responsible for the polymerization that forms the solid, waxy plug in the seminal receptacle. The traits identified here are common to all Portunidae species studied so far.  相似文献   

10.
日本沼虾输精管的结构及其在精荚形成中作用的研究   总被引:2,自引:0,他引:2  
应用光镜和透射电镜技术研究了日本沼虾输精管的结构及其在精荚形成中的作用。结果表明,日本沼虾输精管从形态结构上可分为近端输精管、卷曲输精管、远端输精管和膨大的远端输精管四部分。各部分的管壁皆由分泌上皮、基膜、肌肉层和结缔组织构成,其中分泌上皮包括高度明显不同的低柱状上皮和高拄状上皮两部分。输精管各部分管腔内含有处于不同形成阶段的精荚。进入近端输精管内的精子被支撑在一种嗜酸性基质中。近端输精管的分泌物主要帮助形成精子团,同时形成精荚壁的极小部分。卷曲和远端输精管分泌形成精荚壁的绝大部分,其分泌物由细胞顶端通过外排作用和顶泌机制分泌产生。膨大的远端输精管具有贮存精荚的作用,其分泌上皮也通过外排作用和顶泌机制产生分泌物包裹在已基本形成的精荚外侧,管壁肌肉层在雌雄交配时将管腔内的精荚切割成适宜长度并排出体外。    相似文献   

11.
The morphology and function of the male reproductive system in the spider crab Maja brachydactyla, an important commercial species, is described using light and electron microscopy. The reproductive system follows the pattern found among brachyuran with several peculiarities. The testis, known as tubular testis, consists of a single, highly coiled seminiferous tubule divided all along by an inner epithelium into germinal, transformation, and evacuation zones, each playing a different role during spermatogenesis. The vas deferens (VD) presents diverticula increasing in number and size towards the median VD, where spermatophores are stored. The inner monostratified epithelium exocytoses the materials involved in the spermatophore wall formation (named substance I and II) and spermatophore storage in the anterior and median VD, respectively. A large accessory gland is attached to the posterior VD, and its secretions are released as granules in apocrine secretion, and stored in the lumen of the diverticula as seminal fluids. A striated musculature may contribute to the formation and movement of spermatophores and seminal fluids along the VD. The ejaculatory duct (ED) shows a multilayered musculature and a nonsecretory pseudostratified epithelium, and extrudes the reproductive products towards the gonopores. A tissue attached to the ED is identified as the androgenic gland.  相似文献   

12.
In the present article the anatomy and histology of the male genital system of an endeostigmatid mite are described for the first time. The Endeostigmata probably are a paraphyletic group supposed to include the most primitive actinotrichid mites. In Nanorchestes amphibius, the testis comprises a paired germinal region connected with an unpaired glandular region. In the germinal region, spermiogenesis takes place in cysts of a somatic cell containing germ cells representing the same developmental stage. In the lumen of the glandular region, the spermatozoa are stored together with secretions of the glandular epithelium. These secretions are probably involved in the formation of spermatophores. From the glandular region, spermatozoa and secretions are released into the vasa deferentia that histologically can be divided into three sections, beginning with a short paired region with strong circular muscles serving as a sphincter, continuing with a paired proximal zone, followed by a short unpaired distal section. The distal vas deferens leads into the chitinous, unpaired ductus ejaculatorius which is followed by the progenital chamber. The ductus ejaculatorius is composed of a proximal section and a proximal, central, and anterior chamber. It is accompanied by a complex system of muscles and sclerites probably involved in the formation and ejaculation of the spermatophore. A similar organization can also be found in Prostigmata, but not in Oribatida. Anterior to the progenital chamber is located a paired accessory gland that probably produces a lipid secretion. Spermiogenesis is characterized by disintegration of the nuclear envelope, condensation of chromatin, and extensive reduction of the amount of sperm cell cytoplasm. The mature aflagellate, U-shaped spermatozoa are simple in structure and lack mitochondria and an acrosome complex. The results do not support the current view that Nanorchestidae are more closely related to Sarcoptiformes, i.e., Oribatida and Astigmata, than to Prostigmata.  相似文献   

13.
于光镜和电镜下研究日本沼虾输精管内精荚的结构与形成。结果显示:粗荚呈索状,由精子群、精荚基质、粘液团和荚壁组成;精荚基质与粘液团内均含有交织的纤丝,其中散布着絮状泡和同心圆形泡,精荚壁呈“C”型,单层,由致密纤丝、絮状泡和沟形的网状结构组成,包裹精子群和粘液团;前、中、后输精管的上皮细胞均具合成、分泌精荚形成物质的功能。  相似文献   

14.
Morphological and histochemical studies have been made on the development of the prostate gland of the digenetic trematode, Paramphistomum cervi during the course of its infection in sheep; histochemical characterization of prostate gland secretion in adult worms and its functional relationship with the transport of spermatozoa have also been studied. In 6-wk-old worms, the terminal portion of the male genital duct is formed of what appears to be a syncytial epithelium containing a relatively large number of nuclei compared to the rest of the male duct. Cellular organization of the prostate gland becomes conspicuous in 8-wk-old worms and the prostate gland is fully developed by 16 wk. Two types of prostate gland cells, characteristic of the adult, become distinct in 16-wk-old worms which contain spermatozoa in the lumen of their vas deferens and pars prostatica. Adult worms show two types of prostate gland cells: type I containing mainly glycoprotein and type II mainly phospholipid granules. Weak-to-strong activities of acid phosphatase, alkaline phosphatase, esterase, lipase, adenosine triphosphatase, tetrazolium reductase, NAD-diaphorase, isocitrate dehydrogenase, glyceraldehyde dehydrogenase, α-glycerophosphate dehydrogenase and glucose-6-phosphate dehydrogenase have been observed in the prostate gland. The release of prostate gland secretion and the passage of spermatozoa through the lumen of pars prostatica appear to be synchronized events.  相似文献   

15.
Pea crabs of the subfamily Pinnotherinae (Pinnotheridae) have a high investment in reproduction and an outstanding reproductive output, probably as an adaptation to the required increase in reproductive rate due to the pinnotherids small size and their parasitic, host‐dependant way of life. In the present study, we investigate the male internal reproductive structures and the ultrastructure of spermatozoa of Pinnotheres pisum and Nepinnotheres pinnotheres by histological methods and both scanning‐ and transmission electron microscopy. In the Brachyura, the male internal reproductive systems generally consist of paired testes and corresponding vasa deferentia where spermatozoa develop and mature. Spermatozoal ultrastructure of the investigated pinnotherids conforms to the thoracotreme type, however, N. pinnotheres has an accessory opercular ring and a periopercular rim, neither of which are present in spermatozoa of P. pisum. Spermatozoa are enclosed within spermatophores in the secretory proximal vas deferens. Two types of secretions were observed in P. pisum and N. pinnotheres: an electron dense substance secreted in the proximal vas deferens involved in spermatophore formation, and large electron‐luscent vesicles constituting the seminal plasma in the medial and distal vas deferens. The medial vas deferens is strongly widened compared to other brachyurans to purpose storing spermatophores embedded in seminal plasma. Tubular appendices, which produce and store large amounts of seminal plasma, arise from the distal region of the vas deferens. The appendices extend into the ventral cephalothorax and also in the first pleomere. The latter being an exceptional location for reproductive structures among male brachyurans. J. Morphol. 274:1312–1322, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
We have examined the anatomy of the vas deferens of the lobster Homarus americanus and have described the structure of the proximal vas deferens (segments one and two). The two tubes of segment one descend from the testes and gradually merge into segment two. The epithelium of segment one has synthetic activity and appears to contribute to the sperm-supporting matrix by exocytotic release of granules through its apical surface. The epithelium of segment two is also highly synthetic and secretes the primary spermatophore layer and part of the intermediate layer that surround the sperm mass. The trifoil shape of the extruded spermatophore is established through a change in height of some of the cells lining the lumen in segment two. Connective tissue and circular bands of striated muscle surround the epithelium of both segments.  相似文献   

17.
In chondrichthyes, the process of spermatogenesis produces a spermatocyst composed of Sertoli cells and their cohort of associated spermatozoa linearly arrayed and embedded in the apical end of the Sertoli cell. The extratesticular ducts consist of paired epididymis, ductus deferens, isthmus, and seminal vesicles. In transit through the ducts, spermatozoa undergo modification by secretions of the extratesticular ducts and associated glands, i.e., Leydig gland. In mature animals, the anterior portion of the mesonephros is specialized as the Leydig gland that connects to both the epididymis and ductus deferens and elaborates seminal fluid and matrix that contribute to the spermatophore or spermatozeugmata, depending on the species. Leydig gland epithelium is simple columnar with secretory and ciliated cells. Secretory cells have periodic acid-Schiff positive (PAS+) apical secretory granules. In the holocephalan elephant fish, Callorhynchus milii, sperm and Sertoli cell fragments enter the first major extratesticular duct, the epididymis. In the epididymis, spermatozoa are initially present as individual sperm but soon begin to laterally associate so that they are aligned head-to-head. The epididymis is a highly convoluted tubule with a small bore lumen and an epithelium consisting of scant ciliated and relatively more secretory cells. Secretory activity of both the Leydig gland and epididymis contribute to the nascent spermatophores, which begin as gel-like aggregations of secretory product in which sperm are embedded. Fully formed spermatophores occur in the ductus. The simple columnar epithelium has both ciliated and secretory cells. The spermatophore is regionalized into a PAS+ and Alcian-blue-positive (AB+) cortex and a distinctively PAS+, and less AB+ medulla. Laterally aligned sperm occupy the medulla and are surrounded by a clear zone separate from the spermatophore matrix. Grossly, the seminal vesicles are characterized by spiral partitions of the epithelium that project into the lumen, much like a spiral staircase. Each partition is staggered with respect to adjacent partitions while the aperture is eccentric. The generally nonsecretory epithelium of the seminal vesicle is simple columnar with both microvillar and ciliated cells.  相似文献   

18.
东方扁虾雄性生殖系统的解剖学和组织学研究   总被引:5,自引:0,他引:5  
东方扁虾雄性生殖系统由精巢、输精管及雄性生殖孔三部分组成,输精管可分为前、中、后三段。精巢由卷绕的前、后收集管及持靠其上的许多生精腺囊所组成。同一腺囊内的精细胞发生基本同步,而不同腺囊内则可以不同步。收集管的主要功能是将精细胞团输送至输精管。精荚在输粗管内运行时一直进行着精子的形成过程,直至精子成熟。位于输精管末段不肌层外的索带状细胞团被认为是造雄腺。  相似文献   

19.
Several glycoconjugates are thought to bind spermatozoa as they pass through reproductive ducts. Paraffin sections of testis, ductuli efferentes, epididymis, and vas deferens of male mice were stained with ten different lectin-horseradish peroxidase conjugates to localize possible sites of synthesis and secretion of such glycoconjugates, based on the carbohydrate moieties in their constituent oligosaccharide side chains. Principal (columnar) cells lining the efferent ducts, germinal epithelium, and developing and maturing spermatozoa were examined with light microscopy. Staining of the Golgi and apical zones of cells was interpreted as evidence for synthesis and secretion of glycoconjugates. Principal cells synthesized and secreted glycoconjugates with sugar moieties as follows: sialic acid, all regions of the efferent ducts examined; the terminal disaccharide D-galactose- (beta 1----3) -N-acetyl-D-galactosamine, all regions of ducts except epididymis I; terminal alpha-D-galactosamine, some cells in epididymis III-V; N-acetyl-D-galactosamine, ductuli efferentes, epididymis I, II, and some cells in epididymis III-V; alpha-L-fucose, ductuli efferentes, vas deferens, and all regions of the epididymis except IV; N-glycosidic side chains, ductuli efferentes, vas deferens, and epididymis I, IV, and V. All of these sugar residues as well as N-acetyl-D-glucosamine were associated with the acrosomes and tails of spermatozoa throughout the ducts except for alpha-N-acetyl-D-galactosamine in epididymis I, and all occurred during one or more stages of spermiogenesis. The synthesis and secretion of glycoconjugates that bind to spermatozoa appear to involve more regions of the primary reproductive structures than was believed previously.  相似文献   

20.
Extragonadal reserves totalled 89 X 10(9) spermatozoa for 5--16-year-old sexually rested stallions and 60 X 10(9) for 2--4-year-olds. Regardless of age, the cauda epididymidis contained 62% of the total reserves and the vas deferens, including the ampulla, contained 7% of the total reserves of spermatozoa. The caput plus corpus epididymidis from 5--16-year-old stallions (N = 41) contained 14.9 X 10(9) spermatozoa per side as compared (P less than 0.01) to 8.5 X 10(9) for 2--4-year olds (N = 30). Frequency of ejaculation did not influence the number of spermatozoa found in caput plus corpus epididymidis. Across all ages, the number of spermatozoa potentially available for ejaculation from the cauda epididymidis and vas deferens on each side totalled 54 X 10(9). Collection of 5 successive ejaculates from sexually rested stallions removed 40--60% of the available spermatozoa while ejaculation every 2nd day reduced (P less than 0.05) the number of spermatozoa potentially available for ejaculation by 27%. Nevertheless, sufficient spermatozoa are produced daily (6.4 and 4.2 X 10(9) for 5--16-and 2--4-year-olds) to permit use of an average stallion once or twice daily, during spring and summer, providing sexual behaviour is adequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号