首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative 1H NMR and optical studies of the interaction between poly(dA-dT), ethidium bromide (Et) and ethidium dimer (Et2) in 0.7 M NaCl are reported as a function of the temperature. Denaturation of the complexes followed at both polynucleotide and drug levels leads to a biphasic melting process for poly(dA-dT) complexed with ethidium dimer (t1/2 = 75 degrees C; 93 degrees C) but a monophasic one in poly(dA-dT): ethidium bromide complex (t1/2 = 74 degrees C). In both cases drug signals exhibit monophasic thermal dependence (Et = 81 degrees C; Et2 = 95 degrees C). Evidence is presented showing that the ethidium dimer bisintercalates into poly(dA-dT) in high salt, based on the observation that i) dimer and monomer ring protons exhibit similar upfield shifts upon DNA binding, ii) upfield shifts of DNA sugar protons are twice as large with the dimer than with ethidium bromide. Comparison between native DNA fraction and bound drug fraction indicates that ethidium covers, n = 2.5-3 base pairs. The dimer bisintercalates and covers, n = 5.7 base pairs when the helix fraction is high but as the number of available sites decreases the binding mode changes and the drug monointercalates (n = 2.9).  相似文献   

2.
The physical binding of polycyclic aromatic hydrocarbon derivatives which are ultimate carcinogens to DNA may play a role in the formation of covalent DNA adducts by these compounds or in the detoxification of the compounds via DNA-catalyzed hydrolysis. Previous studies of DNA-binding interactions of derivatives of benzo(a)pyrene (BP) have been confined to low r values (r - ligands bound/base pair). We have now applied the Scatchard formalism (as modified to include neighbor exclusion) to the spectrophotometric determination of the binding of two derivatives of BP, trans - 9,10 - dihydroxydihydro - BP and 7r,8t - dihydroxy-9t,10t-oxy-7,8, 9,10-tetrahydro-BP, to double-stranded DNA at reasonably high r values. Exclusion parameters, binding constants, and thermodynamic parameters are all within the ranges found for other intercalants. Although these ligands are uncharged, the binding exhibits significant ionic strength dependence which can be rationalized (partially) by polyelectrolyte theory. Using the measured ionic strength dependence, a thermodynamic association constant, independent of ionic interactions, can be calculated which is very close to the calculated thermodynamic association constants for ethidium and proflavine.  相似文献   

3.
We have measured the ability of the intercalating drugs proflavine, ethidium bromide, actinomycin D, and bismethidiumspermine to inhibit the salt induced transition of poly(dG-dC) from the B to the Z form. While all of the drugs studied slowed the B to Z transition, the effectiveness of the drugs correlates much better with their DNA binding kinetics than their DNA binding constants. In studies where the binding densities of ethidium and actinomycin were varied we have found that high levels of ethidium, more than 1 per 20 base pairs, were required to inhibit the B to Z transition while low levels of actinomycin, less than 1 per 450 base pairs, reduced the transition rate. Studies of the B to Z transition in the presence of both actinomycin and ethidium suggest that the drugs inhibit the transition by different mechanisms. The results are interpreted in terms of a modification of the kinetic model proposed by Pohl and Jovin in which, depending on the DNA binding kinetics of the drug, the drug may inhibit nucleation and/or propagation of the B to Z transition.  相似文献   

4.
R D Icenogle  E L Elson 《Biopolymers》1983,22(8):1949-1966
The preceding paper develops the theory for the interpretation of fluorescence photobleaching recovery (FPR) measurements of multiple binding of a ligand to a multivalent substrate molecule. Based on a reasonable assumption about the mechanism of the photobleaching process, this analysis shows that the observed behavior of a multivalent system should be practically identical to that of a univalent binding system. This is in contrast to the expected and observed behavior of fluorescence correlation spectroscopy (FCS) measurments. Experimental FPR measurements of multivalent binding of ethidium bromide to DNA confirm these conclusions. The FCS and FPR measurements also reveal an apparently enhanced diffusion of ethidium at high DNA concentration. This enhancement might result from direct transfer of ethidium among DNA molecules.  相似文献   

5.
Study of the relaxation kinetics of the interaction of ethidium and DNA reveals a novel and potentially important general binding mechanism, namely direct transfer of the ligand between DNA binding sites without requiring dissociation to free ligand. The measurable relaxation spectrum shows three relaxation times, indicating that three bound dye species are present at equilibrium; about 80% of the dye is in the major intercalated form. For each relaxation the reciprocal relaxation time varies linearly with concentration up to very high DNA concentrations. The failure of the longer relaxation times to plateau at high concentration can be accounted for by including a bimolecular pathway for conversion from one complex form to another. This we envisage as direct transfer of an ethidium molecule, bound to one DNA molecule, to an empty binding site on another DNA molecule. Additional evidence for this direct transfer mechanism was obtained from an experiment showing that DNA (which binds ethidium relatively rapidly) accelerates the binding of ethidium to poly(rA) · poly(rU), presumably by first forming a DNA-ethidium complex and then transferring the ethidium to RNA. The bimolecular rate constant for transfer is found to be about four times larger than the constant for intercalating the free dye. The transfer pathway thus provides a highly efficient means for the ligand to equilibrate over its DNA binding sites, especially at high polymer concentration. The potential importance of direct transfer for DNA-binding regulatory proteins is emphasized.  相似文献   

6.
Propidium iodide is used as a structural probe for alternating and non-alternating DNA polymers containing guanine and the results are compared to experiments with poly[d(A-T)2], poly(dA . dT) and random DNA sequences. Viscometric titrations indicate that propidium binds to all polymers and to DNA by intercalation. The binding constant and binding site size are quite similar for all alternating polymers, non-alternating polymers containing guanine and natural DNA. Poly(dA . dT) is unusual with a lower binding constant and positive cooperativity in its propidium binding isotherms. Poly(dA . dT) and poly(dG . dC) have similar salt effects but quite different temperature effects in propidium binding equilibria. Polymers and natural DNA have similar rate constants in their SDS driven dissociation reactions. The association rate constants are similar for the alternating polymers and poly(dG . dC) but are significantly reduced for poly(dA . dT). These results suggest that natural DNA, the alternating polymers, and non-alternating polymers containing guanine convert to an intercalated conformation with bound propidium in a very similar manner.  相似文献   

7.
We have examined the binding processes of ethidium bromide interacting with calf thymus DNA using photoacoustic spectroscopy. These binding processes are generally investigated by a combination of absorption or fluorescence spectroscopies with hydrodynamic techniques. The employment of photoacoustic spectroscopy for the DNA-ethidium bromide system identified two binding manners for the dye. The presence of two isosbestic points (522 and 498 nm) during DNA titration was evidence of these binding modes. Analysis of the photoacoustic amplitude signal data was performed using the McGhee-von Hippel excluded site model. The binding constant obtained was 3.4 x 10(8) M(bp)(-1), and the number of base pairs excluded to another dye molecule by each bound dye molecule (n) was 2. A DNA drug dissociation process was applied using sodium dodecyl sulfate to elucidate the existence of a second and weaker binding mode. The dissociation constant determined was 0.43 mM, whose inverse value was less than the previously obtained binding constant, demonstrating the existence of the weaker binding mode. The calculated binding constant was adjusted by considering the dissociation constant and its new value was 1.2 x 10(9) M(bp)(-1) and the number of excluded sites was 2.6. Using the photoacoustic technique it is also possible to obtain results regarding the dependence of the quantum yield of the dye on its binding mode. While intercalated between two adjacent base pairs the quantum yield found was 0.87 and when associated with an external site it was 0.04. These results reinforce the presence of these two binding processes and show that photoacoustic spectroscopy is more extensive than commonly applied spectroscopies.  相似文献   

8.
Pressure-jump study of the kinetics of ethidium bromide binding to DNA   总被引:4,自引:0,他引:4  
Pressure-jump chemical relaxation has been used to investigate the kinetics of ethidium bromide binding to the synthetic double-stranded polymers poly[d(G-C)] and poly[d(A-T)] in 0.1 M NaCl, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, and 1 mM ethylenediaminetetraacetic acid, pH 7.2, at 24 degrees C. The progress of the reaction was followed by monitoring the fluorescence of the intercalated ethidium at wavelengths greater than 610 nm upon excitation at 545 nm. The concentration of DNA was varied from 1 to 45 microM and the ethidium bromide concentration from 0.5 to 25 microM. The data for both polymers were consistent with a single-step bimolecular association of ethidium bromide with a DNA binding site. The necessity of a proper definition of the ethidium bromide binding site is discussed: it is shown that an account of the statistically excluded binding phenomenon must be included in any adequate representation of the kinetic data. For poly[d(A-T)], the bimolecular association rate constant is k1 = 17 X 10(6) M-1 s-1, and the dissociation rate constant is k-1 = 10 s-1; in the case of poly[d(G-C)], k1 = 13 X 10(6) M-1 s-1, and k-1 = 30 s-1. From the analysis of the kinetic amplitudes, the molar volume change, delta V0, of the intercalation was calculated. In the case of poly[d(A-T)], delta V0 = -15 mL/mol, and for poly[d(G-C)], delta V0 = -9 mL/mol; that is, for both polymers, intercalation is favored as the pressure is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In this paper we introduce an important parameter called the iso-competition point (ICP), to characterize the competition binding to DNA in a two-cation-species system. By imposing the condition of charge neutralization fraction equivalence theta1 = ZthetaZ upon the two simultaneous equations in Manning's counterion condensation theory, the ICPs can be calculated. Each ICP, which refers to a particular multivalent concentration where the charge fraction on DNA neutralized from monovalent cations equals that from the multivalent cations, corresponds to a specific ionic strength condition. At fixed ionic strength, the total DNA charge neutralization fractions thetaICP are equal, no matter whether the higher valence cation is divalent, trivalent, or tetravalent. The ionic strength effect on ICP can be expressed by a semiquantitative equation as ICPZa/ICPZb = (Ia/Ib)Z, where Ia, Ib refers to the instance of ionic strengths and Z indicates the valence. The ICP can be used to interpret and characterize the ionic strength, valence, and DNA length effects on the counterion competition binding in a two-species system. Data from our previous investigations involving binding of Mg2+, Ca2+, and Co(NH3)63+ to lambda-DNA-HindIII fragments ranging from 2.0 to 23.1 kbp was used to investigate the applicability of ICP to describe counterion binding. It will be shown that the ICP parameter presents a prospective picture of the counterion competition binding to polyelectrolyte DNA under a specific ion environment condition.  相似文献   

10.
A DNA polymerase-endogenous template complex was isolated from nuclear heads of bull spermatozoa. The buoyant density of the complex was 1.15 g/cm 3. The sedimentation coefficient of the nuclear DNA polymerase isolated from the complex was higher at low ionic strength, but approached 3.4S when centrifuged in a medium containing 2M-KCl. Activated exogenous DNA increased polymerase activity. Only very low activities were detected with synthetic templates such as poly(A).(dT)12-18 and poly(dT).poly(A). The nuclear reaction was stimulated by 150mM-KCl and was slightly inhibited by N-ethylmaleimide; it was resistant to actinomycin D, netropsin and ethidium bromide. Another DNA polymerase, highly sensitive to ethidium bromide, was extracted from the mitochondira-rich middle-piece fraction. Its sedimentation coefficient was close to 9S, but fell to approx. 4S in high-ionic-strength medium.  相似文献   

11.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

12.
The binding of a few drugs (ethidium bromide, propidium diiodide, proflavine and actinomycin D) to DNA has been investigated in aqueous solutions to which cosolvents of different polarity have been added. It is found that both alcohols (less polar than water) and amides (more polar) lower the binding constant according to a linear relationship between the intercalation free energy and cosolvent concentration. The main action of cosolvents cannot be described in terms of electrostatic effects, since they predict much smaller changes in the binding constant than those observed. It appears instead that relevant solvation effects are responsible for the binding strength of the different dyes to DNA. As a general result, it is found that solvation effects largely contribute to the intercalation free energy, thereby weakening the influence of nonspecific interactions at the intercalation site.  相似文献   

13.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7462-7471
The equilibrium binding of ethidium to the right-handed (B) and left-handed (Z) forms of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) was investigated by optical and phase partition techniques. Ethidium binds to the polynucleotides in a noncooperative manner under B-form conditions, in sharp contrast to highly cooperative binding under Z-form conditions. Correlation of binding isotherms with circular dichroism (CD) data indicates that the cooperative binding of ethidium under Z-form conditions is associated with a sequential conversion of the polymer from a left-handed to a right-handed conformation. Determination of bound drug concentrations by various titration techniques and the measurement of circular dichroism spectra have enabled us to calculate the number of base pairs of left-handed DNA that adopt a right-handed conformation for each bound drug; 3-4 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to the right-handed form for each bound ethidium, while approximately 25 and 7 base pairs switch conformations for each bound ethidium in complexes with poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2, respectively. The induced ellipticity at 320 nm for the ethidium-poly(dG-dC).poly(dG-dC) complex in 4.4 M NaCl indicates that the right-handed regions are nearly saturated with ethidium even though the overall level of saturation is very low. The circular dichroism data indicate that ethidium intercalates to form a right-handed-bound drug region, even at low r values where the CD spectra show that the majority of the polymer is in a left-handed conformation.  相似文献   

14.
The potentiometric titration of poly(L -glutamic acid) was performed under conditions of varied ionic strength and concentration of added divalent cations. From these titration curves, the amount of divalent cations, especially magnesium, bound to poly(L -glutamic acid) was determined using a new method of analysis based on polyelectrolyte theory. By comparison with the polyelectrolyte, poly(acrylic acid), it was found that there are no specific interactions between metal ion and poly(L -glutamic acid) in either the helical or random coil conformation. The effect of these divalent cations on the conformation of poly(L -glutamic acid) was also discussed.  相似文献   

15.
Since there is a much longer uterine nuclear retention of the U-11,100A (antiestrogen) receptor complex (UARC) than of the estradiol receptor complex (ERC) at 4–12 hrs after injection, experiments were designed to determine if there is a difference between the relative nuclear affinities for the two RCs as determined by extraction with various ionic strength mediums. Although the UARC was retained longer in the nuclear fraction invivo, the UARC was completely extractable with 0.3M KC1 or 50mM spermine, whereas the ERC demonstrates a saltresistant form. This suggests that the ERC is more tightly bound to nuclear components through this salt-resistant form of the receptor. In addition, various intercalating agents were used to distinguish the different nuclear chromatin DNA sites where the UARC and ERC may be binding. With actinomycin D (50 uM) more ERC than UARC was retained in the nuclear fraction. However, with ethidium bromide (100uM) less ERC than UARC was retained. Also, the ERC selectively released by ethidium bromide is precisely that fraction not released by salt. These results indicate that the UARC and ERC bind to different chromatin loci.  相似文献   

16.
A new family of block polyelectrolyte networks containing cross-linked poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) was synthesized by copolymerization of acrylic acid and bisacrylated PEO (10 kDa). Two materials with different PEO/PAA ratios were compared with a weakly cross-linked PAA homopolymer network. The networks bound a cationic protein, cytochrome C, due to the polyion coupling, leading to the network contraction. After binding the protein the block polyelectrolyte networks were more porous compared to a homopolymer network, facilitating protein absorption within the gel. The protein was released by adding Ca2+ ions or a polycation. Ca2+ ions migrated within the gels and reacted with PAA chains, thus displacing the protein. The polycation transfer into hydrogels, as a result of polyion substitution reactions, was inhibited by the excess of PEO chains in the block polyelectrolyte networks. Overall, these findings advance development of functional polyelectrolyte networks for immobilization and controlled release of proteins.  相似文献   

17.
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.  相似文献   

18.
P L Gilbert  D E Graves  J B Chaires 《Biochemistry》1991,30(45):10925-10931
The effects of covalent modification of poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) by ethidium monoazide (a photoreactive analogue of ethidium) on the salt-induced B to Z transition are examined. Earlier studies have shown ethidium monoazide to bind DNA (in the absence of light) in a manner identical to that of the parent ethidium bromide. Photolysis of the ethidium monoazide-DNA complex with visible light results in the covalent attachment of the photoreactive analogue to the DNA. This ability to form a covalent adduct was utilized to probe the effects of an intercalating irreversibly bound adduct on the salt-induced B to Z transition of the poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) polynucleotides. In the absence of drug, the salt-induced transition from the B to Z structure occurs in a highly cooperative manner. In contrast, this cooperativity is diminished as the concentration of covalently attached drug is increased. The degree of inhibition of the B to Z transition is quantitated as a function of the concentration of covalently attached drug. At a concentration of one drug bound per four base pairs for poly(dGdC).poly(dGdC) and seven base pairs for poly(dGm5dC).poly(dGm5dC), total inhibition of this transition is achieved. Lower concentrations of bound drug were effective in the partial inhibition of this transition. The effects of the covalently bound intercalator on the energetics of the B to Z transition were determined and demonstrated that the adduct is effective in locking the alternating copolymer in a right-handed conformation under high salt conditions.  相似文献   

19.
We have examined binding properties of and dissociation induced by the intercalating dye ethidium bromide when it interacts with the nucleosome core particle under low ionic strength conditions. Ethidium binding to the core particle results in a reversible dissociation which requires the critical binding of 14 ethidium molecules. Under low ionic strength conditions, dissociation is about 90% completed in 5 h. The observed ethidium binding isotherm was corrected for the presence of free DNA due to particle dissociation. The corrected curve reveals that the binding of ethidium to the core particle itself is a highly cooperative process characterized by a low intrinsic binding constant of KA = 2.4 X 10(4) M-1 and a cooperativity parameter of omega = approximately 140. The number of base pairs excluded to another dye molecule by each bound dye molecule (n) is 4.5. Through the use of a chemical probe, methidiumpropyl-EDTA (MPE), we have localized the initial binding sites of ethidium in the core particle to consist of an average of 27 +/- 4 bp of DNA that are distributed near both ends of the DNA termini. MPE footprint analysis has also revealed that, prior to dissociation, the fractional population of core particles which bind the dye (f) may be as low as 50%. Comparison of the binding and dissociation data showed that the cooperative maximum of the binding curve occurred at or near the critical value, i.e., at the point where dissociation began. The data were used to generate a detailed model for the association of ethidium with chromatin at the level of the nucleosome.  相似文献   

20.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号