首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea anemone gametes arise in the endoderm but migrate into the mesoglea at an early stage. In order to observe this process, large individuals of Actinia fragacea were collected from the same intertidal location at regular intervals over a 2-year period, and their gonads were examined by light and electron microscopy. The cellular origin of the oocytes is unclear, but the smallest recognizable oocytes are rounded cells, 6-8 microns in diameter, with relatively large nuclei which may contain synaptinemal complexes. Their cytoplasm contains numerous ribosomes, a flagellar basal-body-rootlet complex, and distinctive dense structures also present in male germ cells but not found in anemone nongerminal cells. During the endodermal phase of growth, the density of the oocyte nucleus increases, a single nucleolus becomes prominent, and mitochondria and glycogen accumulate in the cytoplasm. Most oocytes, but not all, only begin major vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea before they attain a diameter of 25 microns. The oocytes migrate toward and enter the mesoglea by a process resembling amoeboid movement. During entry, the oocytes are constricted into a characteristic "hourglass" shape and become covered by a basal lamina continuous with that of the gonad epithelium. The last part of the oocyte to enter the mesoglea forms an intimate relationship with the surrounding endodermal cells, which is maintained after entry is complete, and is thought to be important in the establishment of the trophonema.  相似文献   

2.
Mouse primordial germ cells (PGCs) migrate from the base of the allantois to the genital ridge. They proliferate both during migration and after their arrival, until initiation of the sex-differentiation of fetal gonads. Then, PGCs enter into the prophase of the first meiotic division in the ovary to become oocytes, while those in the testis become mitotically arrested to become prospermatogonia. Growth regulation of mouse PGCs has been studied by culturing them on feeder cells. They show a limited period of proliferation in vitro and go into growth arrest, which is in good correlation with their developmental changes in vivo. However, in the presence of multiple growth signals, PGCs can restart rapid proliferation and transform into pluripotent embryonic germ (EG) cells. Observation of ectopic germ cells and studies of reaggregate cultures suggested that both male and female PGCs show cell-autonomous entry into meiosis and differentiation into oocytes if they were set apart from the male gonadal environments. Recently, we developed a two-dimensional dispersed culture system in which we can examine transition from the mitotic PGCs into the leptotene stage of the first meiotic division. Such entry into meiosis seems to be programmed in PGCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.  相似文献   

3.
The fine structure of the ectodermal and endodermal muscle layers of Hydra magnipapillata has been analyzed by scanning electron microscopy after hydrolytic removal of the mesoglea with NaOH and subsequent exposure of the basal and lateral aspects of the layers by mechanical dissection. The ectodermal muscle layer consists of fibrous processes of epithelial cells extending longitudinally to the body axis, whereas the endodermal muscle layer comprises cells with hexagonal bases and several strands of myonemes oriented circularly. In each layer, the muscular elements tightly interdigitate, extending a continuous muscle sheet along the mesoglea. The ectodermal and endodermal muscle sheets communicate with each other via foliate microprojections penetrating the mesoglea. On the lateral aspect of the ectodermal epithelium, spiny nerve fibers run along the upper surface of the muscle processes. The spines are often attached to muscle processes, suggesting that the former monitor muscle contraction. Nerve fibers occasionally come into contact with the mesoglea through narrow gaps between the muscle processes. In the hypostomal ectoderm, a small spindle-shaped cell, probably sensory in nature, extends an apical cilium and a long basal process.  相似文献   

4.
In Hydra viridis, cordons of male germ cells lie in gonadal compartments, which are enlarged spaces between the elongated and “spongy” epidermal cells. The germ cells are surrounded by these cells, except for small areas where the interstitial cells and spermatogonia are in direct contact with the mesoglea. Cells from both epidermis and gastrodermis project cytoplasm into the mesoglea, where they contact each other and form trans-mesogleal bridges. The latter exhibit gap junctions, which are particularly abundant at the spermary region. Here, the mesoglea is thinner then elsewhere in the body. Both epithelia are joined by septate junctions toward their apical ends, which are totally impermeable to horseradish peroxidase (HRP). HRP gained entry to the cells of both epithelia by pinocytosis. Incorporation into the cells was high at the basal disk, in the tentacles, and in the mesoglea in the lower part of the body stalk. The tracer was never found within the gonadal space of the testis during spermatogenesis. In mature spermaries during spermiation, tracer-filled intracellular vacuoles fused with the gonadal spaces as the thin cytoplasmic columns of the epidermal cells ruptured; HRP thus gained access to the germ cells. During spermatogenesis, germ cells of Hydra viridis are in a closed compartment. The barrier that controls the access of metabolites to the germ cells is formed by epidermal cells, thinned-out mesoglea, and numerous transmesogleal interepithelial bridges. The presumed role of the barrier is the control of the environment (1) where interstitial cells are differentiating into spermatogonia and meiosis occurs and (2) in which ripe spermatozoa are kept immotile until spermiation.  相似文献   

5.
This study explores the origin of primordial germ cells (PGCs) of the mouse and examines their morphology and associations with other cells during early development. PGCs have been selectively stained by the alkaline phosphatase histochemical reaction and viewed by light and electron microscopy from the time they are first detectable in the yolk sac endoderm until they enter the gonadal ridges. There are conflicting reports as to whether the PGCs originate from endodermal cells or whether they originate elsewhere and subsequently enter the endoderm. The observations in the present study favor the premise that PGCs of the mouse do not originate in the endoderm. Furthermore, it was observed that PGCs undergo specific changes in morphology during the developmental period studied and this was interpreted to mean that, although PGCs are set aside early in development as a distinct cell line, they also continue to become more specialized within time. The germ cell line is rather unusual in that it does not exist as a discrete tissue but, instead, resides within various other tissues during its life history. This apparent dependence upon somatic cells is maintained even in adult animals and may be important in serving to maintain or modify the environment of the germ cells.  相似文献   

6.
7.
The interstitial cells of Pennaria tiarella differentiate exclusively from the central endoderm of the planula. Shortly after their appearance, most of the interstitial cells become cnidoblasts. Subsequently, as the larva transforms into a polyp, both cnidoblasts and interstitial cells migrate from the endoderm, through endoblast and mesoglea, into the ectoderm. It is suggested that some interstitial cells remain in the endoderm and differentiate into the gland and mucous cells of the polyp gastroderm.  相似文献   

8.
Xdazl is an RNA component of Xenopus germ plasm and encodes an RNA-binding protein that can act as a functional homologue of Drosophila boule. boule is required for entry into meiotic cell division during fly spermatogenesis. Both Xdazl and boule are related to the human DAZ and DAZL, and murine Dazl genes, which are also involved in gamete differentiation. As suggested from its germ plasm localization, we show here that Xdazl is critically involved in PGC development in Xenopus. Xdazl protein is expressed in the cytoplasm, specifically in the germ plasm, from blastula to early tailbud stages. Specific depletion of maternal Xdazl RNA results in tadpoles lacking, or severely deficient in, primordial germ cells (PGCs). In the absence of Xdazl, PGCs do not successfully migrate from the ventral to the dorsal endoderm and do not reach the dorsal mesentery. Germ plasm aggregation and intracellular movements are normal indicating that the defect occurs after PGC formation. We propose that Xdazl is required for early PGC differentiation and is indirectly necessary for the migration of PGCs through the endoderm. As an RNA-binding protein, Xdazl may regulate translation or expression of factors that mediate migration of PGCs.  相似文献   

9.
Autoradiographic studies and the use of enzyme histochemistry have revealed that early germ line cells (female and male PGC, oogonia, prediplotene oocytes and prospermatogonia) as well as the more advanced germ cells (diplotene oocytes, spermatogonia, spermatocytes and spermatids) show specific patterns of their DNA and RNA synthesis and their enzymatic equipment. The female and male germ lines show similar kinetics up to the arise of oocytes and T prospermatogonia (T for transitional), the final products of a first limited multiplication process of primitive gonia. In former studies we supposed that oocytes and T prospermatogonia are the first exponents of the female and male pathway of the germ line (Hilscher and Hilscher, 1989a). Recently, it could be shown--using the reverse PLM method in slides of plastic embedded material--that the first differences between female and male GC can already be stated at the end of the first proliferation wave of oogonia and multiplying prospermatogonia; that means even before the existence of oocytes and T prospermatogonia (Hilscher and Hilscher, 1989b). Oogonia and M prospermatogonia (M for multiplying) are equipped both with only one active X chromosome. While oocytes traverse the prediplotene stages of meiotic prophase T prospermatogonia prepare for a second extensive proliferation process: spermatogenesis. Oocytes in meiosis are provided with two active X chromosomes, T prospermatogonia possess only one, and the presence of the Y chromosome is not vital for them. However, the Y chromosome is required for the normal course of spermatogenesis characterized by a stock of stem cells, that are responsible for the continuous production of male gamets. The mammalian oocyte--similar as that of insects and amphibia but to a lower degree--acts as pre-embryo.  相似文献   

10.
Ultrastructural study of the tissues of Veretillum cynomorium shows the presence of two mesenchymatous cellular states in the mesoglea: the nongranular mesenchymatous cells and the granular mesenchymatous cells. These latter possess, besides their cytoplasmic granules, some homogeneous fibrous inclusions, very similar to the fibrous material of the mesoglea. Granules and homogeneous fibrous inclusions are also present in the cytoplasm of some ectodermic and endodermic cells. These morphological results lead us to consider that mesoglea and epithelia can be occupied by the same granular cell type. Besides this, the digestive endodermic cells are sometimes very rich in heterogeneous fibrous inclusions histochemically identified as phagosomes. An autoradiographic study indicates two possible pathways for the synthesis of the mesoglea. The first involves the endoderm which elaborates the mesoglea at a fast rate but in small amounts. The second is due to the granular cells (mesenchymatous and epithelial) which show a slow rate of synthesis leading to the formation of the homogeneous fibrous inclusions. The heterogeneous fibrous inclusions of the digestive endodermic cell support the hypothesis of the involvement of these cells in mesogleal degradation.  相似文献   

11.
12.
Embryogenesis of the alimentary tract in two chrysomelid species (Chrysolina pardalina and Melasoma saliceti) is described. The embryonic development of both species lasts 7days at room temperature. Stomodaeum and proctodaeum invaginate at the anterior and posterior ends of the germ band. Together with the ectodermal tissue the endoderm cells also enter into the embryo. The anterior and posterior parts of the alimentary tract wedge into the yolk in the form of conical structures. The endodermal cells remain at the yolk surface and start migration over the yolk mass as two lateral bands of cells. The endoderm is always accompanied by mesoderm. On the fifth day of development the endodermal cells together with the mesoderm layer spread over the ventral and dorsal sides of the yolk mass and form the single layered primordium of the midgut epithelium. On the sixth day of development a basal lamina appears between the endoderm and the mesoderm cells and differentiation of both tissues starts. The endodermal epithelium cells change shape from flat to cuboidal and eventually into columnar. Mesoderm cells differentiate into muscle and tracheae. On the 7thday of development stomodaeum and proctodaeum become lined with cuticle and the midgut becomes covered with microvilli. The yolk cells populating the yolk mass do not contribute to midgut formation in the species studied.  相似文献   

13.
The stem cell properties of gonocytes and prospermatogonia at prepubertal stages are still largely unknown: it is not clear whether gonocytes and prospermatogonia are a special cell type or similar to adult undifferentiated spermatogonia. To characterize these cells, we have established transgenic mice carrying EGFP (enhanced green fluorescence protein) cDNA under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; Oct4 is reported to be expressed in undifferentiated spermatogonia at prepubertal stages. Generation of transgenic mice enabled us to purify gonocytes and prospermatogonia from the somatic cells of the testis. Transplantation studies of testicular cells so far have been done with a mixture of germ cells and somatic cells. This is the first report that establishes how to purify germ cells from total testicular cells, enabling evaluation of cell-autonomous repopulating activity of a subpopulation of prospermatogonia. We show that prospermatogonia differ markedly from adult spermatogonia in both the size of the KIT-negative population and cell cycle characteristics. The GFP(+) KIT(-) fraction of prospermatogonia has much higher repopulating activity than does the GFP(+)KIT(+) population in the adult environment. Interestingly, the GFP(+)KIT(+) population still exhibits repopulating activity, unlike adult KIT-positive spermatogonia. We also show that ALCAM, activated leukocyte cell adhesion molecule, is expressed transiently in gonocytes. Sertoli cells and myoid cells also express ALCAM at the same stage, suggesting that ALCAM may contribute to gonocyte-Sertoli cell adhesion and migration of gonoyctes toward the basement membrane.  相似文献   

14.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   

15.
Summary Diffuse and synaptic nerve nets are present in the coenenchymal mesoglea and ectoderm of Muricea and Lophogorgia colonies. The nerve nets extend into the polyp column and tentacles maintaining a subectodermalmesogleal position. The density of nerve elements is low in comparison with similar nerve nets found in pennatulids.In the column of the polyp anthocodium, and throughout the oral disk region, neurons cross the mesoglea and enter the polyp endoderm. These neurons presumably connect with the endodermal nerve net which innervates the septal musculature. The trans-mesogleal neurons probably represent the connection between colonial and polyp nervous systems.In the tentacles, longitudinal ectodermal musculature is present with an overlying nerve plexus. These muscles and nerves, as well as tentacular sensory cells, are well represented in the oral side of the tentacles only.Presumed sensory cells form ciliary cone complexes in which one cell possesses an apical cilium. The other cells as well as the centrally located nematocyte contribute microvilli to the cone. The basal portion of the sensory cells is drawn into one or more neurite-like processes which enter the ectodermal nerve plexus. Similar processes form synapses with longitudinal muscle cells and nematocytes. The sensory cells of the ciliary cones presumably include chemoreceptors which can activate or modify nematocyst discharge, local muscle twitches, and tentacle bending.This work was supported by Office of Naval Research Contract N00014-75-C-0242, NSF Grant BMS 74-23242 and General Research Funds of the University of California, Santa Barbara. We wish to thank Dr. Steven K. Fisher for the use of facilities in his lab. This paper is part of a thesis to be submitted by R.A.S. to the Department of Biological Sciences, University of California, Santa Barbara in partial fulfillment of the requirements for the Ph. D.  相似文献   

16.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

17.
Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells.  相似文献   

18.
In vertebrates the endoderm germ layer gives rise to most tissues of the digestive tract and controls head and heart morphogenesis. The induction of endoderm development relies on extracellular signals related to Nodals and propagated intracellularly by TGFbeta type I receptors ALK4/Taram-A. It is unclear, however, whether Nodal/ALK4/Taram-A signalling is involved only in the specification of endodermal precursors or plays a more comprehensive role in the activation of the endodermal program leading to the irreversible commitment of cells to the endodermal fate. Using cell transplantation experiments in zebrafish, we show that marginal cells become committed to endoderm at the onset of gastrulation and that commitment to endoderm can be reached by intracellular activation of the Nodal pathway induced by expression of an activated form of the taram-A receptor, Tar*. In a manner similar to endoderm progenitors, Tar*-activated blastomeres translocate from their initial site of implantation in the blastoderm to reach the surface of their migration substratum, the yolk syncitial layer, where they join endogenous endodermal derivatives during gastrulation and differentiate according to their anteroposterior position. We demonstrate that Nodal/Tar*-induced commitment does not rely on a secondary signal released by Tar*-expressing cells or a signal released by endogenous endoderm since Tar*-expressing wild-type cells can restore endoderm derivatives when transplanted into the endoderm-deficient mutant casanova. Likewise, the YSL does not appear essential for the maintenance of endodermal identity during gastrulation once the Nodal pathway has been activated. Thus, our results demonstrate that the activation of Nodal signalling is sufficient to commit cells both to an endodermal fate and behaviour. Wild-type endoderm implantation into casanova embryos rescues, in a non-autonomous fashion, the defective fusion of the two heart primordia in the midline, highlighting the importance of endoderm for normal heart morphogenesis.  相似文献   

19.
Individuals from a population of the intertidal sea anemone Actinia fragacea (Tugwell) were collected at approximately monthly intervals over an 18 month period. Samples of gonad were removed from each anemone and examined by light and electron microscopy. During late spring and early summer, large numbers of small cells were seen in the endoderm of the female gonads, lying close to the mesoglea. For convenience, these cells were classified into three types. Type I cells are 6–9 μm in diameter, with relatively very large nuclei, which may contain synaptinemal complexes, and scant cytoplasm containing few organelles. Type II cells are larger, reaching 15 μ m in diameter, with more abundant cytoplasm containing more organelles and inclusions. The nucleus is more dense, but may also contain synaptinemal complexes. Type III cells are less common. They are similar in size to Type II cells, but their nuclei contain irregular dense chromatin masses, and the nuclear envelope is incomplete or absent. The possible significance of the various cell types is discussed. It is suggested that Type I cells are oocytes at a very early stage of differentiation and that Type II cells are rather later oocytes. The status of the Type III cells is uncertain.  相似文献   

20.
It is generally believed that during mammalian embryogenesis neurons arise only from the ectodermal germ layer, while the other two germ layers, mesoderm and endoderm, give rise to connective tissue and gut, respectively. Pancreatic islet cells, however, may be an exception to this classical cell lineage derivation. These cells, of endodermal origin, can express several neuronal antigens in addition to the peptide hormones which regulate carbohydrate metabolism. This study sought to determine whether islet cells of adult mice, in addition to displaying biochemical homology to neurons, are also capable of extending neurites, the cytoplasmic elongations that are recognized as a hallmark of the neuronal phenotype. It was found that dissociated pancreatic islet cells can extend neurite-like processes when maintained in vitro and that these processes contain neurofilament, the intermediate filament protein specific to neurons. Islet cells maintained in vitro as explants, however, did not form neurites thereby indicating that normal histotypical contacts inhibit process formation. This observation may account for the absence of process elaboration by intact islets in vivo. These results demonstrate that cells derived from the endoderm share the ability to display a characteristic neuronal phenotype with neuroectodermal cells and, furthermore, that the expression of these traits is regulated by epigenetic cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号