首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

2.
The secreted goblet cell-derived protein resistin-like molecule beta (RELMbeta) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMbeta influences CD4(+) T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMbeta in augmenting CD4(+) Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-gamma production and intestinal inflammation. In contrast, infected RELMbeta(-/-) mice exhibited a significantly reduced expression of parasite-specific CD4(+) T cell-derived IFN-gamma and TNF-alpha and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMbeta activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-gamma expression in CD4(+) T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMbeta, can promote adaptive CD4(+) T cell responses and chronic inflammation following intestinal helminth infection.  相似文献   

3.
Numerous epidemiological studies have shown an inverse correlation between helminth infections and the manifestation of atopic diseases, yet the immunological mechanisms governing this phenomenon are indistinct. We therefore investigated the effects of infection with the filarial parasite Litomosoides sigmodontis on allergen-induced immune reactions and airway disease in a murine model of asthma. Infection with L. sigmodontis suppressed all aspects of the asthmatic phenotype: Ag-specific Ig production, airway reactivity to inhaled methacholine, and pulmonary eosinophilia. Similarly, Ag-specific recall proliferation and overall Th2 cytokine (IL-4, IL-5, and IL-3) production were significantly reduced after L. sigmodontis infection. Analysis of splenic mononuclear cells and mediastinal lymph nodes revealed a significant increase in the numbers of T cells with a regulatory phenotype in infected and sensitized mice compared with sensitized controls. Additionally, surface and intracellular staining for TGF-beta on splenic CD4(+) T cells as well as Ag-specific TGF-beta secretion by splenic mononuclear cells was increased in infected and sensitized animals. Administration of Abs blocking TGF-beta or depleting regulatory T cells in infected animals before allergen sensitization and challenges reversed the suppressive effect with regard to airway hyperreactivity, but did not affect airway inflammation. Despite the dissociate results of the blocking experiments, these data point toward an induction of regulatory T cells and enhanced secretion of the immunomodulatory cytokine TGF-beta as one principle mechanism. In conclusion, our data support the epidemiological evidence and enhance the immunological understanding concerning the impact of helminth infections on atopic diseases thus providing new insights for the development of future studies.  相似文献   

4.
One third of the human population is infected with helminth parasites. To promote their longevity and to limit pathology, helminths have developed several strategies to suppress the immune response of their host. As this immune suppression also acts on unrelated third-party Ags, a preexisting helminth infection may interfere with vaccination efficacy. In this study, we show that natural infection with Litomosoides sigmodontis suppressed the humoral response to thymus-dependent but not to thymus-independent model Ags in C57BL/6 mice. Thereby, we provide evidence that reduced humoral responses were mediated by interference with Th cell function rather than by direct suppression of B cells in L. sigmodontis-infected mice. We directly demonstrate suppression of Ag-specific proliferation in OVA-specific Th cells after adoptive transfer into L. sigmodontis-infected mice that led to equally reduced production of OVA-specific IgG. Transferred Th cells displayed increased frequencies of Foxp3(+) after in vivo stimulation within infected but not within naive mice. Helminth-mediated suppression was induced by established L. sigmodontis infections but was completely independent of the individual worm burden. Using DEREG mice, we rule out a central role for host-derived regulatory T cells in the suppression of transferred Th cell proliferation. In contrast, we show that L. sigmodontis-induced, host-derived IL-10 mediated Foxp3 induction in transferred Th cells and significantly contributed to the observed Th cell hypoproliferation within infected mice.  相似文献   

5.
The central role for Th2 cells in the development of Ag-induced airway hyperresponsiveness and eosinophilic inflammation is well documented. We have reported a crucial role for TCR-induced activation of the Ras/extracellular signal-regulated kinase mitogen-activated protein kinase cascade in Th2 cell differentiation. Here, we show that the development of both OVA-induced airway hyperresponsiveness and eosinophilic airway inflammation in a mouse asthma model are attenuated in transgenic mice by the overexpression of enzymatically inactive Ras molecules in T cells. In addition, reduced levels of IL-5 production and eosinophilic inflammation induced by nematode infection (Nippostrongylus brasiliensis or Heligmosomoides polygyrus) were detected. Thus, the level of Ras activation in T cells appears to determine Th2-dependent eosinophilic inflammation and Ag-induced airway hyperresponsiveness.  相似文献   

6.
Immunomodulatory oligosaccharides found on helminths also are found in human milk, and both helminths and milk have been shown to be immunosuppressive. We have been examining the immunomodulatory capabilities of two oligosaccharides expressed in milk and on helminth parasites, lacto-N-fucopentaose III and lacto-N-neotetraose (LNnT). In an attempt to dissect mechanisms that lead to Th2 polarization and immune suppression, we examined the early response in mice to the glycoconjugate LNnT-Dextran (LNnT-Dex). We found that injection of LNnT-Dex expanded a cell population, phenotypically defined as Gr1(+)/CD11b(+)/F4/80(+), as early as 2 h after injection. Examination of spontaneous cytokine production showed that this Gr1(+)/F4/80(+) population of cells spontaneously produced low levels of proinflammatory cytokines, but higher levels of IL-10 and TGF-beta ex vivo, compared to peritoneal cells from mice injected with Dex. Gr1(+) cells adoptively suppressed naive CD4(+) T cell proliferation in vitro in response to anti-CD3/CD28 Ab stimulation. Suppression of naive CD4(+) cells involved cell contact and was dependent on IFN-gamma and NO, with a discrete role played by IL-10. Coculture of naive CD4(+)T cells with Gr1(+) suppressor cells did not lead to CD4(+) T cell apoptosis, although it did imprint on naive CD4(+) T cells a response characterized by lower levels of IFN-gamma, coincident with increased IL-13 production. Our results suggest that both human milk and helminth parasites may share a ligand-specific mechanism involved in the generation of anti-inflammatory mediators that suppress Th1-type and inflammatory responses.  相似文献   

7.
Chronic helminth infections induce a type 2 immune response characterized by eosinophilia, high levels of IgE, and increased T cell production of type 2 cytokines. Because basophils have been shown to be substantial contributors of IL-4 in helminth infections, and because basophils are capable of inducing Th2 differentiation of CD4(+) T cells and IgE isotype switching in B cells, we hypothesized that basophils function to amplify type 2 immune responses in chronic helminth infection. To test this, we evaluated basophil function using the Litomosoides sigmodontis filaria model of chronic helminth infection in BALB/c mice. Time-course studies showed that eosinophilia, parasite Ag-specific CD4(+) T cell production of IL-4 and IL-5 and basophil activation and IL-4 production in response to parasite Ag all peak late (6-8 wk) in the course of L. sigmodontis infection, after parasite-specific IgE has become detectable. Mixed-gender and single-sex worm implantation experiments demonstrated that the relatively late peak of these responses was not dependent on the appearance of circulating microfilariae, but may be due to initial low levels of parasite Ag load and/or habitation of the developing worms in the pleural space. Depletion of basophils throughout the course of L. sigmodontis infection caused significant decreases in total and parasite-specific IgE, eosinophilia, and parasite Ag-driven CD4(+) T cell proliferation and IL-4 production, but did not alter total worm numbers. These results demonstrate that basophils amplify type 2 immune responses, but do not serve a protective role, in chronic infection of mice with the filarial nematode L. sigmodontis.  相似文献   

8.
Allergic airway inflammation is generally considered a Th2-type immune response. Recent studies, however, demonstrated that Th17-type immune responses also play important roles in this process, especially in the pathogenesis of neutrophilic airway inflammation, a hallmark of severe asthma. We previously reported that dendritic cells release dopamine to naive CD4(+) T cells in Ag-specific cell-cell interaction, in turn inducing Th17 differentiation through dopamine D1-like receptor (D1-like-R). D1-like-R antagonist attenuates Th17-mediated diseases such as experimental autoimmune encephalomyelitis and autoimmune diabetes. However, the effect of antagonizing D1-like-R on Th17-mediated airway inflammation has yet to be studied. In this study, we examined whether D1-like-R antagonist suppresses OVA-induced neutrophilic airway inflammation in OVA TCR-transgenic DO11.10 mice and then elucidated the mechanism of action. DO11.10 mice were nebulized with OVA or PBS, and some mice received D1-like-R antagonist orally before OVA nebulization. D1-like-R antagonist significantly suppressed OVA-induced neutrophilic airway inflammation in DO11.10 mice. It also inhibited the production of IL-17 and infiltration of Th17 cells in the lung. Further, D1-like-R antagonist suppressed the production of IL-23 by lung CD11c(+) APCs. In contrast, D1-like-R antagonist did not increase Foxp3(+) regulatory T cells in the lung. D1-like-R antagonist neither suppressed nonspecific LPS-induced neutrophilic airway inflammation nor OVA-induced eosinophilic airway inflammation. These results indicate that D1-like-R antagonist could suppress Th17-mediated neutrophilic airway inflammation, raising the possibility that antagonizing D1-like-R serves as a promising new strategy for treating neutrophil-dominant severe asthma.  相似文献   

9.
Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4(+)CD25(+)Foxp3(+)IL-10(+) regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4(+) mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy.  相似文献   

10.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

11.
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10(-/-) T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10(-/-) T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant.  相似文献   

12.
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22.  相似文献   

13.
Although many studies have shown that pulmonary surfactant protein (SP)-A functions in innate immunity, fewer studies have addressed its role in adaptive immunity and allergic hypersensitivity. We hypothesized that SP-A modulates the phenotype and prevalence of dendritic cells (DCs) and CD4(+) T cells to inhibit Th2-associated inflammatory indices associated with allergen-induced inflammation. In an OVA model of allergic hypersensitivity, SP-A(-/-) mice had greater eosinophilia, Th2-associated cytokine levels, and IgE levels compared with wild-type counterparts. Although both OVA-exposed groups had similar proportions of CD86(+) DCs and Foxp3(+) T regulatory cells, the SP-A(-/-) mice had elevated proportions of CD4(+) activated and effector memory T cells in their lungs compared with wild-type mice. Ex vivo recall stimulation of CD4(+) T cell pools demonstrated that cells from the SP-A(-/-) OVA mice had the greatest proliferative and IL-4-producing capacity, and this capability was attenuated with exogenous SP-A treatment. Additionally, tracking proliferation in vivo demonstrated that CD4(+) activated and effector memory T cells expanded to the greatest extent in the lungs of SP-A(-/-) OVA mice. Taken together, our data suggested that SP-A influences the prevalence, types, and functions of CD4(+) T cells in the lungs during allergic inflammation and that SP deficiency modifies the severity of inflammation in allergic hypersensitivity conditions like asthma.  相似文献   

14.
It is estimated that over one third of the world population is infected with helminths, Strongyloides ssp. accounting for approximately 30-100 million cases. As helminth infections often result in a modulation of the host's immune system, infected people may display impaired responses to concurrent infections and to third party antigens. Here, we employ the experimental system of murine Strongyloides ratti infection to investigate the impact of helminth infections on experimental vaccinations. We demonstrate that concurrent infection with S. ratti strongly affected the humoral response to a thymus dependent model antigen, whereby predominantly Th1 associated IgG2b production was suppressed. We provide evidence that this suppression was due to modulation of T helper cell and not B cell function as the responses to a thymus independent model antigen remained unchanged in S. ratti infected mice. Moreover, using an adoptive transfer system, we show that infection with S. ratti directly interfered with antigen-specific proliferation of T cell receptor transgenic CD4(+) T helper cells in vivo. Finally, using IL-10 deficient mice and mice that selectively lack T helper cell derived IL-10 we rule out a role for host-derived IL-10 in mediating the suppression of thymus dependent model antigen response in S. ratti infected mice.  相似文献   

15.
Protective immunity against Helicobacter pylori infection in mice has been associated with a strong Th1 response, involving IL-12 as well as IFN-gamma, but recent studies have also demonstrated prominent eosinophilic infiltration, possibly linked to local Th2 activity in the gastric mucosa. In this study we investigated the role of IL-18, because this cytokine has been found to be a coregulator of Th1 development as well as involved in Th2-type responses with local eotaxin production that could influence gastric eosinophilia and resistance to infection. We found that IL-18(-/-) mice failed to develop protection after oral immunization with H. pylori lysate and cholera toxin adjuvant, indicating an important role of IL-18 in protection. Well-protected C57BL/6 wild-type (WT) mice demonstrated substantial influx of CD4(+) T cells and eosinophilic cells in the gastric mucosa, whereas IL-18(-/-) mice had less gastritis, few CD4(+) T cells, and significantly reduced numbers of eosinophilic cells. T cells in well-protected WT mice produced increased levels of IFN-gamma and IL-18 to recall Ag. By contrast, unprotected IL-18(-/-) mice exhibited significantly reduced gastric IFN-gamma and specific IgG2a Ab levels. Despite differences in gastric eosinophilic cell infiltration, protected WT and unprotected IL-18(-/-) mice had comparable levels of local eotaxin, suggesting that IL-18 influences protection via Th1 development and IFN-gamma production rather than through promoting local production of eotaxin and eosinophilic cell infiltration.  相似文献   

16.
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.  相似文献   

17.
18.
We have previously found that co-immunisation with ovalbumin (OVA) and the body fluid of the helminth Ascaris suum inhibited an OVA-specific delayed type hypersensitivity (DTH) response by reducing OVA-specific CD4+ T lymphocyte proliferation via an IL-4 independent mechanism. In the present study, we determined whether parasite infections themselves could induce similar changes to peripheral immunisation by examining the modulation of OVA-specific immune responses during acute and chronic helminth infections. Surprisingly, an acute infection with Trichinella spiralis, but not a chronic infection with Heligmosomoides polygyrus, inhibited the OVA-specific DTH reaction. Correspondingly, the T helper 1 (Th1) OVA-specific response was decreased in mice infected with T. spiralis, but not with H. polygyrus. Inhibition of the Th1 response may be a result of a shift in the Th1/Th2 balance as although both H. polygyrus and T. spiralis infected mice induced a Th2 OVA-specific response, that exhibited by T. spiralis was more potent. Furthermore, although IL-10 secretion upon OVA restimulation was similarly increased by both infections, production of this immunoregulatory cytokine may play a role in the suppression of immune responses observed with T. spiralis infection depending on the context of its release. Interestingly, analysis of the OVA-specific T lymphocyte division by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining revealed that gastro-intestinal infection with the acute helminth T. spiralis, but not with chronic H. polygyrus, inhibited the systemic immune response by significantly inhibiting the antigen-specific T cell proliferation during the primary response, a mechanism similar to that observed when A. suum parasite extracts were directly mixed with the OVA during immunisation in our previous studies.  相似文献   

19.
We previously demonstrated that IL-10 is critical in the control of acute inflammation during development of Trichinella spiralis in the muscle. In this study, we use gene-targeted knockout mice, adoptive transfer of specific T cell populations, and in vivo Ab treatments to determine the mechanisms by which inflammation is controlled and effector T cell responses are moderated during muscle infection. We report that CD4(+)CD25(-) effector T cells, rather than CD4(+)CD25(+) regulatory T cells, suppress inflammation by an IL-10-dependent mechanism that limits IFN-gamma production and local inducible NO synthase induction. Conversely, we show that depletion of regulatory T cells during infection results in exaggerated Th2 responses. Finally, we provide evidence that, in the absence of IL-10, TGF-beta participates in control of local inflammation in infected muscle and promotes parasite survival.  相似文献   

20.
Advances in the treatment of allergic disorders require elucidation of the autoregulatory immune systems induced in averting detrimental inflammatory responses against invading foreign Ags. We previously reported that excessive Ags intruding through the airway mucosa induce a subset of regulatory CD4+ T cells secreting TGF-beta in the regional mediastinal lymph nodes (MLNs), which inhibits Th2 cells and subsequent eosinophilic inflammation in the trachea. In the present experiments we examined whether and in what mechanisms TGF-beta-secreting CD4+ T cells in the MLNs regulate Th cell-mediated skin inflammation using a previously established murine model. Th1 or Th2 cells injected s.c. into ear lobes of naive mice induced swelling, whereas the concomitant local injection of MLN cells suppressed the inflammation. The suppressor activities of MLN cells were markedly neutralized by anti-TGF-beta mAb and were mimicked by rTGF-beta. The MLN cell- and rTGF-beta-induced inhibition was reversed by anti-IL-10 mAb significantly in Th1-induced inflammation and only partially in Th2-induced inflammation. rIL-10 reduced Th-induced ear swelling, although higher doses of rIL-10 were required in Th2-induced one. Thus, allergen-specific TGF-beta-producing CD4+ T cells induced in the respiratory tract controlled cutaneous inflammatory responses by Th1 or Th2 cells either directly by TGF-beta or indirectly through IL-10 induction. From a clinical standpoint, these observations might explain the mechanism of spontaneous regression in some patients with atopic dermatitis, which exhibits both Th1- and Th2-mediated skin inflammation in response to airborne protein Ags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号