共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国科学:生命科学英文版》2020,(5)
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies. 相似文献
2.
By means of light microscopical techniques and scanning electron microscopy spatial organization of the lacunar-canalicular system (LCS) has been studied in structures of a mature lamellar bone. A method for making corrosive casts of osseous lacunae and canaliculi is suggested, owing to which their spatial organization can be analysed. Certain data on interconnections of the osseous lacunae with each other and with vascular canals and natural surfaces of the bone are presented. The role of LCS as a component of the microcirculatory bed of the lamellar bone is discussed. 相似文献
3.
Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system 总被引:4,自引:0,他引:4
A 3 year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield can enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient management system. The field trial evaluated microbial inoculants, which include a commercially available plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhiza fungi (AMF), and their combination across 2 tillage systems (no-till and conventional till) and 2 fertilization regimes (poultry litter and ammonium nitrate). Data were collected on plant height, yield (dry mass of ears and silage), and nutrient content of corn grain and silage. In addition, nutrient content of soil was determined, and bioavailability of soil nutrient was measured with plant root simulator probes. Results showed that inoculants promoted plant growth and yield. For example, grain yields (kg.ha(-1)) in 2007 for inoculants were 7717 for AMF, 7260 for PGPR+AMF, 7313 for PGPR, 5725 for the control group, and for fertilizer were 7470 for poultry litter and 6537 for NH4NO3. Nitrogen content per gram of grain tissues was significantly enhanced in 2006 by inoculant, fertilizer, and their interactions. Significantly higher amounts of N, P, and K were removed from the plots with inoculants, based on total nutrient content of grain per plot. These results supported the overall hypothesis and indicate that application of inoculants can lead to reduction in the build up of N, P, and K in agricultural soils. Further studies should be conducted to combine microbial inoculants with reduced rates of fertilizer. 相似文献
4.
Diana I. Aparicio-Bautista Julio I. Pérez-Carreón Nora Gutiérrez-Nájera Juan P. Reyes-Grajeda Jaime Arellanes-Robledo Verónica R. Vásquez-Garzón Mónica N. Jiménez-García Saúl Villa-Treviño 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(12):2528-2538
Conversion of protein –SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period. 相似文献
5.
全球气候变化将增加未来高温与干旱的发生频率和强度,然而高温与干旱的交互作用对农作物生长、养分含量及其利用效率的影响还不甚清楚。因此,研究高温与干旱交互作用对农作物生理生态的影响将为准确评价农作物对未来极端气候条件的响应提供科学依据。选取全球第四大经济作物——西红柿为研究对象,在人工智能气候箱中模拟高温和干旱环境。共设置两个水分处理(正常浇水;干旱)与两个温度处理(常温-26℃/19℃(白天/夜间);高温-42℃/35℃(白天/夜间)(7d))。主要测定指标包括生物量以及生物量分配、比叶面积、养分含量(全氮、全磷)、光合元素利用效率(光合氮素利用效率、光合磷素利用效率)。研究表明,高温、干旱单独作用以及交互作用均显著降低了根、茎、叶生物量以及总生物量,并且高温干旱交互作用使总生物量降低最多。在生物量分配方面,高温单独作用显著降低了根质量分数以及根冠比,而干旱单独作用增加了根质量分数、茎质量分数以及根冠比,但降低了叶质量分数。在养分含量方面,高温单独作用导致叶片全氮、全磷含量显著降低、茎全磷含量显著增加、根全磷含量显著降低。干旱单独作用导致叶片、茎全磷含量显著降低、根全氮含量显著升高。高温与干旱交互作用对生物量分配及养分含量的影响与干旱胁迫单独作用类似。在光合元素利用效率方面,高温、干旱单独作用均降低了幼苗光合氮素利用效率、光合磷素利用效率,并且高温加剧了干旱对光合磷素利用效率的影响。因此,在未来气候变化情况下,高温与干旱交互作用可能会对农作物产生更大威胁。 相似文献
6.
Summary Growth rates and seasonal changes in foliar nitrogen, phosphorus, and calcium of Cornus florida L. (flowering dogwood) individuals were determined in three forest stands which differed in soil moisture and soil nutrient availability. Nutrient use efficiency of individual trees was measured by amount of leaf dry mass produced per unit nutrient invested, rates of nutrient resorption prior to litterfall, wood and leaf mass produced per unit nutrient turnover (=growth efficiency), projected uptake needs, and losses of nutrients to simulated throughfall leaching. Relative growth rates during this drought year, as determined by dimension analysis, were highest in the site with highest soil moisture, while 5-year average relative growth rates were highest in the most fertile site. Differences in nitrogen use efficiency were generally small, with the highest efficiencies in trees on the moistest site; in contrast, phosphorus use efficiency was consistently highest on the least fertile site. Foliar calcium levels increased throughout the year and calcium use efficiency was generally highest on the least fertile site. These data suggest that growth and nitrogen use efficiency were more strongly affected by differences in soil moisture than were phosphorus or calcium use, at least during this very dry year. 相似文献
7.
M P Gorizontova T V Speranskaia 《Biulleten' eksperimental'no? biologii i meditsiny》1989,108(10):414-417
Biomicroscopic studies of rat mesentery during 24-hours immobilization have shown phasic changes in globulin-FITC transport in the system: venule-interstitial-lymphatic microvessel. During short immobilization we have discovered the increasing contraction of lymphatic microvessels; during long immobilization--the decreasing contraction has been discovered. 相似文献
8.
Relationship between phospholipid biosynthesis and the efficiency of the arsenate transport system in yeasts 总被引:1,自引:0,他引:1 下载免费PDF全文
J Cerbón 《Journal of bacteriology》1970,102(1):97-105
In studying the possibility that phosphoinositides which formed complexes with arsenic were involved in the arsenate transport system of yeasts, a comparative study of the phospholipid composition and metabolism was carried out both in Saccharomyces carslbergensis and in its arsenate-adapted variant, which showed a deficient inflow of arsenate. It was found that the lipid composition of the two organisms was quite similar, the main classes of phospholipids being phosphatidylcholine, phosphatidylethanolamine, and phosphoinositides. The only difference was a 1.5- to 2-fold increase in the proportion of inositides in the arsenate-adapted cells. When the transport of arsenate became inactivated in the nonadapted yeasts after a 30- to 60-min exposure to 10(-2)m arsenate, an increment of inositides of 29 to 50% over the original level was also detected. A study of the incorporation of radioactivity from uniformly labeled (14)C-maltose and from (32)P-orthophosphate ((32)P(i)) demonstrated a decreased rate of lipid biosynthesis in the arsenate-adapted cells as compared to the normal nonadapted ones. The turnover of the phosphate in phospholipids demonstrated no turnover in phosphatidylcholine and phosphatidylethanolamine, and a slow turnover in phosphoinositides. It could be inferred that a normal rate of phospholipid (phosphoinositides) biosynthesis is necessary to have a normal arsenate uptake and that inositide accumulation impairs both the mechanism responsible for the uptake and accumulation of arsenate and the rate of lipid biosynthesis. No differences were found in the deoxyribonucleic acid or protein content of the two types of cells. Also, the arsenate-adapted cells, once freed of external arsenate, showed an increased uptake of (32)P(i) from low external concentrations of phosphate (10(-6) to 10(-8)m, 10-fold over that observed in AsS cells). These results are indicative of independent behavior in phosphate and arsenate transport systems. 相似文献
9.
D Merrill Dane Connie C W Hsia Eugene Y Wu Richard T Hogg Deborah C Hogg Aaron S Estrera Robert L Johnson 《Journal of applied physiology》2006,101(1):289-297
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460-1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82-89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DL(CO)) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DL(CO) was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DL(CO) with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia. 相似文献
10.
Proteolytic degradation of fibrin, the major structural component in blood clots, is critical both during normal wound healing and in the treatment of ischemic stroke and myocardial infarction. Fibrin-containing clots experience substantial strain due to platelet contraction, fluid shear, and mechanical stress at the wound site. However, little is understood about how mechanical forces may influence fibrin dissolution. We used video microscopy to image strained fibrin clots as they were degraded by plasmin, a major fibrinolytic enzyme. Applied strain causes up to 10-fold reduction in the rate of fibrin degradation. Analysis of our data supports a quantitative model in which the decrease in fibrin proteolysis rates with strain stems from slower transport of plasmin into the clot. We performed fluorescence recovery after photobleaching (FRAP) measurements to further probe the effect of strain on diffusive transport. We find that diffusivity perpendicular to the strain axis decreases with increasing strain, while diffusivity along the strain axis remains unchanged. Our results suggest that the properties of the fibrin network have evolved to protect mechanically loaded fibrin from degradation, consistent with its function in wound healing. The pronounced effect of strain upon diffusivity and proteolytic susceptibility within fibrin networks offers a potentially useful means of guiding cell growth and morphology in fibrin-based biomaterials. 相似文献
11.
H Schulz P Heilmann A Hillebrecht J Gebhart M Meyer J Piiper J Heyder 《Journal of applied physiology》1992,72(4):1557-1562
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs. 相似文献
12.
Shahid Muhammad Ahmed Temoor Noman Muhammad Javed Muhammad Tariq Javed Muhammad Rizwan Tahir Muhammad Shah Shahid Masood 《Annals of microbiology》2019,69(7):727-739
The present study was conducted to elucidate the role of phytobeneficial bacteria to control the cellular oxidative damage in maize (Zea mays L.) plants caused by salinity. Bacteria were isolated from the rhizosphere of kallar grass (Leptochloa fusca L.) through serial dilution method and taxonomically identified on the basis of their 16S ribosomal RNA gene sequencing. In vitro phosphate solubilization, indole-3-acetic acid (IAA) synthesis, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were evaluated by solubilization index measurement, colorimetric method, and turbidity assay, respectively. In the pot experiment, the impact of single and mixed inoculation of these strains at four levels (0, 50, 100, and 200 mM) of salt stress was evaluated in terms of growth and physiological response of maize plants to salinity. The bacterial strains (STN-1, STN-5, and STN-14) were taxonomically classified as Staphylococcus spp. At 5% NaCl level, the strains demonstrated substantial potential for phosphate solubilization, ACC deaminase activity, and IAA production both with and without tryptophan. The inoculation of strains STN-1, STN-5, and mixed inoculation resulted in substantial growth improvement of maize plants along with increased antioxidant enzyme activity and decreased levels of reactive oxygen species. In addition, single inoculation of STN-1 and STN-5 along with mixed inoculation augmented the uptake of N, P, K, and Ca+2 and reduced Na+ uptake. Current results demonstrated that the strains STN-1 and STN-5 modulated stress-responsive mechanisms and regulated ion balance in induced salinity to promote maize growth. 相似文献
13.
The interior of a eukaryotic cell is a highly complex composite material which consists of water, structural scaffoldings, organelles, and various biomolecular solutes. All these components serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle transport. A disruption of the vesicle-mediated cell transport is thought to contribute to several severe diseases and disorders, such as diabetes, Parkinson’s and Alzheimer’s disease, emphasizing the clinical relevance. To address the outlined objective, a multiscale finite element model of the diffusive vesicle transport is proposed on the basis of the concept of homogenization, owed to the complexity of the cytoskeletal network. In order to study the microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle transport, a parametrized three-dimensional geometrical model of the actin filament network was generated on the basis of experimentally observed filament densities and network geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes of the obtained effective diffusion properties within two-dimensional sampling domains of the whole cell model revealed that the computed homogenized diffusion coefficients can be predicted statistically accurate by a simple two-parameter power law as soon as the inaccessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is known. This relationship, in turn, leads to a massive reduction in computation time and allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle transport. Hence, the numerical simulations predicted a 35% increase in transport time due to a uniformly distributed four-fold increase of the total filament amount. On the other hand, a hypothetically reduced expression of filament cross-linking proteins led to sparser filament networks and, thus, a speed up of the vesicle transport. 相似文献
14.
Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals 总被引:3,自引:0,他引:3
Ellen Van Donk 《Aquatic Ecology》1997,31(1):53-58
It is becoming increasingly evident that the efficiency of zooplankton grazing on algae is not only a matter of quantity of the grazer relative to its food. Planktonic primary producers are not defenseless food-particles that are easily harvested by the consumers. Several algal species are able to adjust their phenotype (colony formation, spines, size) in such a way that it results in a reduced grazing pressure. It was recently demonstrated that morphological changes in the cell wall of green algae, induced by nutrient limitation and UV-B stress, may reduce their digestibility. A high fraction of induced cells pass intact and viable through the gut of the zooplankters, such that the grazing impact on the population is strongly reduced. It was also found that the presence of exudates (infochemicals) released by daphnids may change the morphology of algae. Unicellular green algae of the genus Scenedesmus were induced to form eight-cell coenobial types, heavily armed with spines, within three to five days after adding filtered water from an algal culture with Daphnia present. Both defence mechanisms may play an important role in zooplankton production and competition, and may serve as an example of highly efficient strategies to resist heavy grazing pressure. 相似文献
15.
Molecular dynamics (MD) simulations were performed to study the migration of 2,4,6-trinitrotoluene (TNT) in the fluorine rubber
binder of polymer-bonded explosives (PBX) over a wide range of temperatures. The diffusion coefficient (D) of TNT is determined via microcanonical (NVE) MD simulation using the COMPASS force field. The calculated diffusion coefficient
(D) was then used to compute the migration time of TNT based on Fick’s second law and the results agree well with the experimental
data. The relation between D of TNT and temperature was confirmed and the results confirm the temperature-dependence of diffusion coefficients of TNT
in the binder, but a break is seen about the melt point (the temperature at which the elastomeric state of the binder changes
to a viscosity state) in the Arrhenius plot of ln(D) versus 1/T. 相似文献
16.
17.
Sustainable development in its three dimensions – economic, social and environmental – has become a major concern on an international scale. The problem is global, but must be solved locally. Most of the world’s population lives in cities that act as centres of economic growth and productivity, but which – if they develop in the wrong direction – can cause social inequalities, or irreversibly harm the environment. Urban transport causes a number of negative impacts that can affect sustainability targets. The objective of this study is to propose an analysis of sustainability of urban passenger transport systems based on available indicators in most cities. This will serve to benchmark the practices of different cities and manage their transport systems. This work involves the creation of composite indicators (CI) to measure the sustainability of urban passenger transport systems. The methodology is applied to 23 European cities. The indicators are based on a benchmarking approach, and the evaluation of each aspect in each case therefore depends on the performance of the whole sample. The CI enabled us to identify which characteristics have the greatest influence on the sustainability of a city’s transport system, and to establish transport policies that could potentially improve its shortcomings. Finally, the cities are clustered according to the values obtained from the CIs, and thus according to the weaknesses and strengths of their transport systems. 相似文献
18.
Neospora caninum is an apicomplexan parasite identified as a major cause of abortion in cattle and neurological disease in various animal species. It is closely related to Toxoplasma gondii, sharing the ability to persist indefinitely in latent stage within the host as a tissue cyst containing slow-dividing bradyzoites. In this study, we compared different stress methods to induce in vitro bradyzoite conversion, using MARC-145 cells infected with Nc-Liverpool isolate. The tachyzoite-to-bradyzoite conversion rate was monitored at days 3, 5, and 7 after stress in a double-immunofluorescence assay using a monoclonal antibody against the tachyzoite antigen SAG1 (alphaSAG1) and a rabbit serum directed to the intracytoplasmic bradyzoite antigen BAG1 (alphaBAG1). Seven days of treatment with 70 microM sodium nitroprusside offered the highest bradyzoite transformation rate and the best yield of total parasitophorous vacuoles observed. In the present work, we introduce an alternative, simplified, and more advantageous method for bradyzoite production of N. caninum, using a reliable cell culture system easy to handle and with promising capacity of parasite purification. 相似文献
19.
Ivannik BP Riabchenko NI Dzikovskaia LA Khorokhorina VA Riabchenko VI Sin'kova RV Grosheva IP Degtiareva EV 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2000,40(6):656-658
Exposure to radiation, as well as holding under conditions of limited mobility during 24 h, induced decrease in thymus cell number, increase in number of DNA breaks. The content the products of lipid peroxidation reactive with thiobarbituric acid in blood serum of mice decreased as well. The stress effect is comparable with radiation doses in the range of 50-60 cGy. 相似文献
20.
On the efficiency and reversibility of active ligand transport induced by alternating rectangular electric pulses. 下载免费PDF全文
The stationary-state kinetic properties of a simplified two-state electro-conformational coupling model (ECC) in the presence of alternating rectangular electric potential pulses are derived analytically. Analytic expressions for the transport flux, the rate of electric energy dissipation, and the efficiency of the transducing system are obtained as a function of the amplitude and frequency of the oscillation. These formulas clarify some fundamental concept of the ECC model and are directly applicable to the interpretation and design of experiments. Based on these formulas, the reversibility and the degree of coupling of the system can be studied quantitatively. It is found that the oscillation-induced free energy transduction is reversible and tight-coupled only when the amplitude of the oscillating electric field is infinitely large. In general, the coupling is not tight when the amplitude of the electric field is finite. Furthermore, depending on the kinetic parameters of the model, there may exist a "critical" electric field amplitude, below which free energy transduction is not reversible. That is, energy may be transduced from the electric to the chemical, but not from the chemical to the electric. 相似文献