首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

2.
The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 A. Full occupancy binding of the inhibitor is observed only at one of the active sites of the homodimeric enzyme where the flexible loop is locked in a completely open conformation by crystal contacts. There is evidence that the inhibitor also binds to the second active site of the enzyme, but with low occupancy. The hydroxamyl group of the inhibitor forms hydrogen bonds to the side chains of Asn 11, Lys 13, and His 95, whereas each of its three methylene units is involved in nonpolar interactions with the side chain of the flexible loop residue Ile 172. Interactions between the hydroxamyl and the catalytic base Glu 167 are absent. The binding of this phosphonate inhibitor exhibits three unusual features: (1) the flexible loop is open, in contrast with the binding mode observed in eight other complexes between triosephosphate isomerase and various phosphate and phosphonate compounds; (2) compared with these complexes the present structure reveals a 1.5-A shift of the anion-binding site; (3) this is the first phosphonate inhibitor that is not forced by the enzyme into an eclipsed conformation about the P-CH2 bond. The results are discussed with respect to an ongoing drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.  相似文献   

3.
We present a comprehensive analysis of the catalytic cycle of the enzyme triosephosphate isomerase (TIM), including both the reactive chemistry and the catalytic loop and side-chain motions. Combining accurate mixed quantum mechanics/molecular mechanics (QM/MM) and protein structure prediction methods, we have modeled both the structural and chemical aspects of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a wealth of experimental data. The conjunction of this novel computational approach with the use of the recent near-atomic resolution TIM-DHAP Michaelis complex PDB structure, 1NEY.pdb, has enabled us to obtain robust qualitative and, where available, quantitative agreement with a wide range of experimental data. Among the principal conclusions that we are able to draw are the importance of the monoanionic (as opposed to dianioic) form of the substrate phosphate group in the catalytic cycle, detailed positioning and energetics of the key catalytic residues in the active-site, the flexible nature of Glu165, which favors its direct involvement in the formation of the enediol intermediate, energetics of the open and closed form of the catalytic loop region in the presence and absence of substrate, and quantitative reproduction of various experimentally measured reaction rates, typically to within approximately 1 kcal/mol. Our results are consistent with the available experimental data, and provide an initial picture as to why loop opening when GAP is the product has a higher barrier than when DHAP is the product.  相似文献   

4.
The structure of trypanosomal triosephosphate isomerase (TIM)has been solved at a resolution of 2.1Å in a new crystal form grown at pH 8.8 from PEG6000. In this new crystal form (space group C2, cell dimensions 94.8 Å, 48.3 Å, 131.0 Å, 90.0°, 100.3°, 90.0°), TIM is present in a ligand-free state. The asymmetric unit consists of two TIM subunits. Each of these subunits is part of a dimer which is sitting on a crystallographic twofold axis, such that the crystal packing is formed from two TIM dimers in two distinct environments. The two constituent monomers of a given dimer are, therefore, crystallographically equivalent. In the ligand-free state of TIM in this crystal form, the two types of dimer are very similar in structure, with the flexible loops in the “Open” conformation. For one dimer (termed molecule-1), the flexible loop (loop-6) is involved in crystal contacts. Crystals of this type have been used in soaking experiments with 0.4 M ammonium sulphate (studied at 2.4 Å resolution), and with 40 μM phosphoglycolohydroxamate (studied at 2.5 Å resolution). It is found that transfer to 0.4 M ammonuum sulphate (equal to 80 times the Ki of sulphate for TIM), gives rise to significant sulphate binding at the active site of one dimer (termed molecule-2), and less significant binding at the active site of the other. In neither dimer does sulphate induce a “closed” conformation. In a mother liquor containing 40 μM phosphoglycolohydroxamate (equal to 10 times the Ki of phosphoglycolohydroxamate for TIM), an inhibitor molecule binds at the active site of only that dimer of which the flexible loop is free from crystal contacts (molecule-2). In this dimer, it induces a closed conformation. These three structures are compared and discussed with respect to the mode of binding of ligand in the active site as well as with respect to the conformational changes resulting from ligand binding. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK–TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.  相似文献   

6.
Triosephosphate isomerase has an important loop near the active site which can exist in a "closed" and in an "open" conformation. Here we describe the structural properties of this "flexible" loop observed in two different structures of trypanosomal triosephosphate isomerase. Trypanosomal triosephosphate isomerase, crystallized in the presence of 2.4 M ammonium sulfate, packs as an asymmetric dimer of 54,000 Da in the crystallographic asymmetric unit. Due to different crystal contacts, peptide 167-180 (the flexible loop of subunit-1) is an open conformation, whereas in subunit-2, this peptide (residues 467-480) is in a closed conformation. In the closed conformation, a hydrogen bond exists between the tip of the loop and a well-defined sulfate ion which is bound to the active site of subunit-2. Such an active site sulfate is not present in subunit-1 due to crystal contacts. When the native (2.4 M ammonium sulfate) crystals are transferred to a sulfate-free mother liquor, the flexible loop of subunit-2 adopts the open conformation. From a closed starting model, this open conformation was discovered through molecular dynamics refinement without manual intervention, despite involving C alpha shifts of up to 7 A. The tip of the loop, residues 472, 473, 474, and 475, moves as a rigid body. Our analysis shows that in this crystal form the flexible loop of subunit-2 faces a solvent channel. Therefore the open and the closed conformations of this flexible loop are virtually unaffected by crystal contacts. The actual observed conformation depends only on the absence or presence of a suitable ligand in the active site.  相似文献   

7.
Giardiasis, the most prevalent intestinal parasitosis in humans, is caused by Giardia lamblia. Current drug therapies have adverse effects on the host, and resistant strains against these drugs have been reported, demonstrating an urgent need to design more specific antigiardiasic drugs. ATP production in G. lamblia depends mainly on glycolysis; therefore, all enzymes of this pathway have been proposed as potential drug targets. We previously demonstrated that the glycolytic enzyme triosephosphate isomerase from G. lamblia (GlTIM), could be completely inactivated by low micromolar concentrations of thiol-reactive compounds, whereas, in the same conditions, the activity of human TIM (HuTIM) was almost unaltered. We found that the chemical modification (derivatization) of at least one Cys, of the five Cys residues per monomer in GlTIM, causes this inactivation. In this study, structural and functional studies were performed to describe the molecular mechanism of GlTIM inactivation by thiol-reactive compounds. We found that the Cys222 derivatization is responsible for GlTIM inactivation; this information is relevant because HuTIM has a Cys residue in an equivalent position (Cys217). GlTIM inactivation is associated with a decrease in ligand affinity, which affects the entropic component of ligand binding. In summary, this work describes a mechanism of inactivation that has not been previously reported for TIMs from other parasites and furthermore, we show that the difference in reactivity between the Cys222 in GlTIM and the Cys217 in HuTIM, indicates that the surrounding environment of each Cys residue has unique structural differences that can be exploited to design specific antigiardiasic drugs.  相似文献   

8.
Triosephosphate isomerase (TIM), from the hyperthermophilic bacterium Thermotoga maritima, has been shown to be covalently linked to phosphoglycerate kinase (PGK) forming a bifunctional fusion protein with TIM as the C-terminal portion of the subunits of the tetrameric protein (Schurig et al., EMBO J 14:442-451, 1995). To study the effect of the anomalous state of association on the structure, stability, and function of Thermotoga TIM, the isolated enzyme was cloned and expressed in Escherichia coli, and compared with its wild-type structure in the PGK-TIM fusion protein. After introducing a start codon at the beginning of the tpi open reading frame, the gene was expressed in E.c.BL21(DE3)/ pNBTIM. The nucleotide sequence was confirmed and the protein purified as a functional dimer of 56.5 kDa molecular mass. Spectral analysis, using absorption, fluorescence emission, near- and far-UV circular dichroism spectroscopy were used to compare the separated Thermotoga enzyme with its homologs from mesophiles. The catalytic properties of the enzyme at approximately 80 degrees C are similar to those of its mesophilic counterparts at their respective physiological temperatures, in accordance with the idea that under in vivo conditions enzymes occupy corresponding states. As taken from chaotropic and thermal denaturation transitions, the separated enzyme exhibits high intrinsic stability, with a half-concentration of guanidinium-chloride at 3.8 M, and a denaturation half-time at 80 degrees C of 2 h. Comparing the properties of the TIM portion of the PGK-TIM fusion protein with those of the isolated recombinant TIM, it is found that the fusion of the two enzymes not only enhances the intrinsic stability of TIM but also its catalytic efficiency.  相似文献   

9.
The enzymatic reaction of triosephosphate isomerase (TIM) is controlled by the movement of a loop (loop6, residues 166-176). Crystal structures of TIMs from a variety of sources have revealed that the loop6, which is in an open conformation in the unliganded enzyme, adopts a closed conformation in inhibitor complexes. In contrast, structures with loop open conformation are obtained in most of the complexes of TIM from the malarial parasite Plasmodium falciparum (PfTIM). W168 is a conserved N-terminal hinge residue, involved in different sets of interactions in the "open" and "closed" forms of loop6. The role of W168 in determining the loop conformation was examined by structural studies on the mutant W168F and its complexes with ligands. The three-dimensional structures of unliganded mutant (1.8 A) and complexes with sulfate (2.8 A) and glycerol-2-phosphate (G2P) (2.8 A) have been determined. Loop6 was found disordered in these structures, reflecting the importance of W168 in stabilizing either the open or the closed states. Critical sequence differences between the Plasmodium enzyme and other TIMs may influence the equilibrium between the closed and open forms. Examination of the environment of the loop6 shows that its propensity for the open or the closed forms is influenced not only by Phe96 as suggested earlier, but also by Asn233, which occurs in the vicinity of the active site. This residue is Gly in the other TIM sequences and probably plays a crucial role in the mode of ligand binding, which in turn affects the loop opening/closing process in PfTIM.  相似文献   

10.
The key residue of the active site of triosephosphate isomerase (TIM) is the catalytic glutamate, which is proposed to be important (i) as a catalytic base, for initiating the reaction, as well as (ii) for the subsequent proton shuttling steps. The structural properties of this glutamate in the liganded complex have been investigated by studying the high resolution crystal structures of typanosomal TIM, complexed with three suicide inhibitors: (S)-glycidol phosphate ((S)-GOP, at 0.99 Å resolution), (R)-glycidol phosphate, ((R)-GOP, at 1.08 Å resolution), and bromohydroxyacetone phosphate (BHAP, at 1.97 Å resolution). The structures show that in the (S)-GOP active site this catalytic glutamate is in the well characterized, competent conformation. However, an unusual side chain conformation is observed in the (R)-GOP and BHAP complexes. In addition, Glu97, salt bridged to the catalytic lysine in the competent active site, adopts an unusual side chain conformation in these two latter complexes. The higher chemical reactivity of (S)-GOP compared with (R)-GOP, as known from solution studies, can be understood: the structures indicate that in the case of (S)-GOP, Glu167 can attack the terminal carbon of the epoxide in a stereoelectronically favored, nearly linear O–C–O arrangement, but this is not possible for the (R)-GOP isomer. These structures confirm the previously proposed conformational flexibility of the catalytic glutamate in its closed, liganded state. The importance of this conformational flexibility for the proton shuttling steps in the TIM catalytic cycle, which is apparently achieved by a sliding motion of the side chain carboxylate group above the enediolate plane, is also discussed.  相似文献   

11.
The crystal structures of Klebsiella pneumoniae pullulanase and its complex with glucose (G1), maltose (G2), isomaltose (isoG2), maltotriose (G3), or maltotetraose (G4), have been refined at around 1.7-1.9A resolution by using a synchrotron radiation source at SPring-8. The refined models contained 920-1052 amino acid residues, 942-1212 water molecules, four or five calcium ions, and the bound sugar moieties. The enzyme is composed of five domains (N1, N2, N3, A, and C). The N1 domain was clearly visible only in the structure of the complex with G3 or G4. The N1 and N2 domains are characteristic of pullulanase, while the N3, A, and C domains have weak similarity with those of Pseudomonas isoamylase. The N1 domain was found to be a new type of carbohydrate-binding domain with one calcium site (CBM41). One G1 bound at subsite -2, while two G2 bound at -1 approximately -2 and +2 approximately +1, two G3, -1 approximately -3 and +2 approximately 0', and two G4, -1 approximately -4 and +2 approximately -1'. The two bound G3 and G4 molecules in the active cleft are almost parallel and interact with each other. The subsites -1 approximately -4 and +1 approximately +2, including catalytic residues Glu706 and Asp677, are conserved between pullulanase and alpha-amylase, indicating that pullulanase strongly recognizes branched point and branched sugar residues, while subsites 0' and -1', which recognize the non-reducing end of main-chain alpha-1,4 glucan, are specific to pullulanase and isoamylase. The comparison suggested that the conformational difference around the active cleft, together with the domain organization, determines the different substrate specificities between pullulanase and isoamylase.  相似文献   

12.
Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), and a compound structurally related to both (3-phosphoglycerate to 2.2 A). The active site structures of these complexes were compared with each other, and with two previously determined structures of triosephosphate isomerase either free from inhibitor or complexed with sulfate. The comparison reveals three conformations available to the "flexible loop" near the active site of triosephosphate isomerase: open (no ligand), almost closed (sulfate), and fully closed (phosphate/phosphonate complexes). Also seen to be sensitive to the nature of the active site ligand is the catalytic residue Glu-167. The side chain of this residue occupies one of two discrete conformations in each of the structures so far observed. A "swung out" conformation unsuitable for catalysis is observed when sulfate, 3-phosphoglycerate, or no ligand is bound, while a "swung in" conformation ideal for catalysis is observed in the complexes with glycerol-3-phosphate or 3-phosphonopropionate. The water structure of the active site is different in all five structures. The results are discussed with respect to the triosephosphate isomerase structure function relationship, and with respect to an on-going drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.  相似文献   

13.
The catalytic metal binding site of xylose isomerase from Arthrobacter B3728 was modified by protein engineering to diminish the inhibitory effect of Ca2+ and to study the competence of metals on catalysis. To exclude Ca2+ from Site 2 a double mutant D254E/D256E was designed with reduced space available for binding. In order to elucidate structural consequences of the mutation the binary complex of the mutant with Mg2+ as well as ternary complexes with bivalent metal ions and the open-chain inhibitor xylitol were crystallized for x-ray studies. We determined the crystal structures of the ternary complexes containing Mg2+, Mn2+, and Ca2+ at 2.2 to 2.5 Å resolutions, and refined them to R factors of 16.3, 16.6, and 19.1, respectively. We found that all metals are liganded by both engineered glutamates as well as by atoms O1 and O2 of the inhibitor. The similarity of the coordination of Ca2+ to that of the cofactors as well as results with Be2+ weaken the assumption that geometry differences should account for the catalytic noncompetence of this ion. Kinetic results of the D254E/D256E mutant enzyme showed that the significant decrease in Ca2+ inhibition was accompanied by a similar reduction in the enzymatic activity. Qualitative argumentation, based on the protein electrostatic potential, indicates that the proximity of the negative side chains to the substrate significantly reduces the electrostatic stabilization of the transition state. Furthermore, due to the smaller size of the catalytic metal site, no water molecule, coordinating the metal, could be observed in ternary complexes of the double mutant. Consequently, the proton shuttle step in the overall mechanism should differ from that in the wild type. These effects can account for the observed decrease in catalytic efficiency of the D254E/D256E mutant enzyme. Proteins 28:183–193, 1997. © 1997 Wiley-Liss Inc.  相似文献   

14.
O S Smart  J Akins  D M Blow 《Proteins》1992,13(2):100-111
A proposed reaction mechanism for the enzyme D-xylose isomerase involves the ring opening of the cyclic substrate with a subsequent conformational rearrangement to an extended open-chain form. Restrained energy minimization was used to simulate the rearrangement. In the ring-opening step, the substrate energy function was gradually altered from a cyclic to an open-chain form, with energy minimization after each change. The protein/sugar contact energy did not increase significantly during the process, showing that there was no steric hindrance to ring opening. The conformational rearrangement involves an alteration in the coordination of the substrate to metal ion [1], which was induced by gradually changing restraints on metal/ligand distances. By allowing varying amounts of flexibility in the protein and examining a simplified model system, the interactions of the sugar with metal ion [1] and its immediate ligands were found to be the most important contributors to the energy barrier for the change. Only small changes in the positions of protein atoms were required. The energy barrier to the rearrangement was estimated to be less than the Arrhenius activation energy for the enzymatic reaction. This is in accordance with experimental indications that the isomerization step is rate determining.  相似文献   

15.
Enzymes achieve their catalytic proficiency by precisely positioning the substrate and catalytic residues with respect to each other. Atomic resolution crystallography is an excellent tool to study the important details of these geometric active‐site features. Here, we have investigated the reaction mechanism of triosephosphate isomerase (TIM) using atomic resolution crystallographic studies at 0.82‐Å resolution of leishmanial TIM complexed with the well‐studied reaction‐intermediate analog phosphoglycolohydroxamate (PGH). Remaining unresolved aspects of the reaction mechanism of TIM such as the protonation state of the first reaction intermediate and the properties of the hydrogen‐bonding interactions in the active site are being addressed. The hydroxamate moiety of PGH interacts via unusually short hydrogen bonds of its N1? O1 moiety with the carboxylate group of the catalytic glutamate (Glu167), for example, the distance of N1(PGH)‐OE2(Glu167) is 2.69 ± 0.01 Å and the distance of O1(PGH)‐OE1(Glu167) is 2.60 ± 0.01 Å. Structural comparisons show that the side chain of the catalytic base (Glu167) can move during the reaction cycle in a small cavity, located above the hydroxamate plane. The structure analysis suggests that the hydroxamate moiety of PGH is negatively charged. Therefore, the bound PGH mimics the negatively charged enediolate intermediate, which is formed immediately after the initial proton abstraction from DHAP by the catalytic glutamate. The new findings are discussed in the context of the current knowledge of the TIM reaction mechanism. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 A, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the type IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-site disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.  相似文献   

18.
The three-dimensional crystal structure of the NAD(+)-linked glutamate dehydrogenase from Clostridium symbiosum has been solved to 1.96 A resolution by a combination of isomorphous replacement and molecular averaging and refined to a conventional crystallographic R factor of 0.227. Each subunit in this multimeric enzyme is organised into two domains separated by a deep cleft. One domain directs the self-assembly of the molecule into a hexameric oligomer with 32 symmetry. The other domain is structurally similar to the classical dinucleotide binding fold but with the direction of one of the strands reversed. Difference Fourier analysis on the binary complex of the enzyme with NAD+ shows that the dinucleotide is bound in an extended conformation with the nicotinamide moiety deep in the cleft between the two domains. Hydrogen bonds between the carboxyamide group of the nicotinamide ring and the side chains of T209 and N240, residues conserved in all hexameric GDH sequences, provide a positive selection for the syn conformer of this ring. This results in a molecular arrangement in which the A face of the nicotinamide ring is buried against the enzyme surface and the B face is exposed, adjacent to a striking cluster of conserved residues including K89, K113, and K125. Modeling studies, correlated with chemical modification data, have implicated this region as the glutamate/2-oxoglutarate binding site and provide an explanation at the molecular level for the B type stereospecificity of the hydride transfer of GDH during the catalytic cycle.  相似文献   

19.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

20.
Lipopolysaccharide (LPS) biosynthesis represents an underexploited target pathway for novel antimicrobial development to combat the emergence of multidrug‐resistant bacteria. A key player in LPS synthesis is the enzyme D ‐arabinose‐5‐phosphate isomerase (API), which catalyzes the reversible isomerization of D ‐ribulose‐5‐phosphate to D ‐arabinose‐5‐phosphate, a precursor of 3‐deoxy‐D ‐manno‐octulosonate that is an essential residue of the LPS inner core. API is composed of two main domains: an N‐terminal sugar isomerase domain (SIS) and a pair of cystathionine‐β‐synthase domains of unknown function. As the three‐dimensional structure of an enzyme is a prerequisite for the rational development of novel inhibitors, we present here the crystal structure of the SIS domain of a catalytic mutant (K59A) of E. coli D ‐arabinose‐5‐phosphate isomerase at 2.6‐Å resolution. Our structural analyses and comparisons made with other SIS domains highlight several potentially important active site residues. In particular, the crystal structure allowed us to identify a previously unpredicted His residue (H88) located at the mouth of the active site cavity as a possible catalytic residue. On the basis of such structural data, subsequently supported by biochemical and mutational experiments, we confirm the catalytic role of H88, which appears to be a generally conserved residue among two‐domain isomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号