首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35 degrees C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.  相似文献   

2.
A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6-8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus, Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total 'freshwater' eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in beaches and recreational waters.  相似文献   

3.
Traditionally fluorescence in situ hybridization (FISH) has been performed with labeled DNA oligonucleotide probes. Here we present for the first time a high affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting thermotolerant Campylobacter spp. using FISH. Thermotolerant Campylobacter spp, including the species Campylobacter coli, Campylobacter jejuni and Campylobacter lari, are important food and water borne pathogens. The designed PNA probe (CJE195) bound with higher affinity to a previously reported low affinity site on the 16S rRNA than the corresponding DNA probe. PNA also overcame the problem of the lack of affinity due to the location of the binding site and the variation of the target sequence within species. The PNA probe specificity was tested with several bacterial species, including other Campylobacter spp. and their close relatives. All tested C. coli, C. jejuni and C. lari strains were hybridized successfully. Aging of the Campylobacter cultures caused the formation of coccoid forms, which did not hybridize as well as bacteria in the active growth phase, indicating that the probe could be used to assess the physiological status of targeted cells. The PNA FISH methodology detected C. coli by membrane filtration method from C. coli spiked drinking water samples.  相似文献   

4.
Chen G  Zhang C  Zhang B  Wang G  Lu D  Xu Z  Yan P 《PloS one》2011,6(10):e25527
Prorocentrum donghaiense is a common but dominant harmful algal bloom (HAB) species, which is widely distributed along the China Sea coast. Development of methods for rapid and precise identification and quantification is prerequisite for early-stage warning and monitoring of blooms due to P. donghaiense. In this study, sequences representing the partial large subunit rDNA (D1-D2), small subunit rDNA and internal transcribed spacer region (ITS-1, 5.8S rDNA and ITS-2) of P. donghaiense were firstly obtained, and then seven candidate DNA probes were designed for performing fluorescence in situ hybridization (FISH) tests on P. donghaiense. Based on the fluorescent intensity of P. donghaiense cells labeled by the DNA probes, the probe DP0443A displayed the best hybridization performance. Therefore, a PNA probe (PP0443A) analogous to DP0443A was used in the further study. The cells labeled with the PNA probe displayed more intensive green fluorescence than that labeled with its DNA analog. The PNA probe was used to hybridize with thirteen microalgae belonging to five families, i.e., Dinophyceae, Prymnesiophyceae, Raphidophyceae, Chlorophyceae and Bacillariophyceae, and showed no visible cross-reaction. Finally, FISH with the probes PP0443A and DP0443A and light microscopy (LM) analysis aiming at enumerating P. donghaiense cells were performed on the field samples. Statistical comparisons of the cell densities (cells/L) of P. donghaiense in the natural samples determined by FISH and LM were performed using one-way ANOVA and Duncan's multiple comparisons of the means. The P. donghaiense cell densities determined by LM and the PNA probe are remarkably higher than (p<0.05) that determined by the DNA probe, while no significant difference is observed between LM and the PNA probe. All results suggest that the PNA probe is more sensitive that its DNA analog, and therefore is promising for the monitoring of harmful algal blooms of P. donghaiense in the future.  相似文献   

5.
AIMS: A method for rapid and simultaneous detection, identification and enumeration of specific micro-organisms using Peptide Nucleic Acid (PNA) probes is presented. METHODS AND RESULTS: The method is based on a membrane filtration technique. The membrane filter was incubated for a short period of time. The microcolonies were analysed by in situ hybridization, using peroxidase-labelled PNA probes targeting a species-specific rRNA sequence, and visualized by a chemiluminescent reaction. Microcolonies were observed as small spots of light on film, thereby providing simultaneous detection, identification and enumeration. The method showed 95-100% correlation to standard plate counts along with definitive identification due to the specificity of the probe. CONCLUSION: Using the same protocol, results were generated approximately three times faster than culture methods for Gram-positive and -negative bacterial species and yeast species. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is an improvement on the current membrane filtration technique, providing rapid determination of the level of specific pathogens, spoilage or indicator micro-organisms.  相似文献   

6.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

7.
The occurrence of antibiotic activity in the extracts of 114 species of pteridophytes (27 families, 61 genera) has been surveyed. The plants were extracted in water, methanol, 70% ethanol, acetone and ether and assayed against 3 gram-positive, I acid-fast and 5 gram-negative bacteria and 3 fungal plant pathogens. Sixty-seven ferns and 6 fern allies, representing 64% of the samples examined, were antibiotic ally active. The active substances were in most cases antibacterial and only 3 possessed antifungal activity. Thirty-three species were inhibitory to gram-positive bacteria alone, 9 exclusively against gram-negative bacteria and 15 to both. Twenty species were inhibitory to penicillin-resistant Staphylococcus aureus, 16 against Mycobacterium phlei, 24 against Salmonella typhi, 16 against Vibrio cholerae and 3 against Pseudomonas aeruginosa. Only Dryopteris coch-leata was active against both bacteria and fungi. Five other species of Dryopteris showed remarkable antibacterial activity. The ferns of “Adiantum group” were found to be particularly active against gram-positive bacteria. The polypodiaceous ferns constitute a rich group of which Microsorium alternifolium, Leptochillus decurrens, Polypodium irioides, Pyrrosia mannii and Phymatodes ebenipes deserve special mention. Several thelypteroid, davalloid and athyroid ferns were also fairly active.  相似文献   

8.
Six unsymmetrical diorganyltellurium(IV) dichlorides RR'TeCl2 (where R= phenacyl-, 1-naphthacyl-, and styrylacyl- and R' = p-methoxyphenyl, p-hydroxyphenyl-, and 3-methyl-4-hydoxyphenyl-) were tested for their antibacterial activity against gram-positive (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923) and gram-negative (Escherichia coli ATCC 25922. Pseudomonas aeruginosa ATCC 27853 and Salmonella sp.) bacteria. Antibacterial activity was measured by disk diffusion method. Inhibition zones demonstrated that all the compounds showed good activity against gram-negative strains. Phenacyl (3-methyl-4-hydroxyphenyl) tellurium(IV) dichloride and naphthacyl (3-methyl-4-hydroxyphenyl) tellurium(IV) dichloride showed significant activity against both gram-positive and gram-negative strains. Among the tested compounds, the former exhibited maximum activity against gram-positive bacteria, while the latter against all the bacteria under study and styrylacyl (p-methoxyphenyl) tellurium(IV) dichloride against all the three gram-negative bacteria.  相似文献   

9.
A new chemiluminescent in situ hybridization (CISH) method that provides simultaneous detection, identification, and enumeration of Pseudomonas aeruginosa in bottled water within 1 working day has been developed. Individual micro-colonies of P. aeruginosa were detected directly on membrane filters following 5 h of growth by use of soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeted to a species-specific sequence in P. aeruginosa rRNA. Within each micro-colony, reaction of the peroxidase with a chemiluminescent substrate generated light that was subsequently captured by film or with a digital camera system. Each spot of light represented one micro-colony of P. aeruginosa. Sensitivity and specificity for the identification of P. aeruginosa were 100% as determined by testing 28 P. aeruginosa strains and 17 other bacterial species that included closely related Pseudomonas species. Furthermore, the number of micro-colonies of P. aeruginosa represented by light spots correlated with counts of visible colonies following sustained growth. We conclude that PNA CISH speeds up traditional membrane filtration techniques and adds the specificity of PNA probe technology to generate fast and definitive results.  相似文献   

10.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

11.
Candidemia is associated with high mortality, especially with neutropenic and intensive care unit patients. A delay in early, effective antifungal therapy has been associated with increased mortality and hospital costs. Peptide nucleic acid fluorescent in-situ hybridization (PNA FISH) can identify Candida species within 3 hours after a positive blood culture demonstrates yeast. A Candida albicans probe and a dual C. albicans/Candida glabrata probe are available in clinical practice, and multi-Candida species probes and flow cytometry are in development. Recent data suggest that the rapid identification of Candida species with PNA FISH can provide early targeted therapy to patients and thus reduce antifungal costs and improve patient care. This review evaluates the clinical and laboratory effects of the Candida probes and their limitations, and competing technologies. Candida PNA FISH probes offer clinicians the early knowledge of the species they are treating, allowing them to appropriately tailor therapy.  相似文献   

12.
Peritoneal macrophages (PM) play an essential role in the pathogenesis of bacterial peritonitis, the main complication of peritoneal dialysis (PD). We determined the antibacterial activity of PM from 31 PD patients using gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) test organisms. In an 8-hour test assay, PM revealed the highest antibacterial activity against E. coli [median bactericidal index (Bi) = 5.46 representing 0.74 log growth inhibition compared to controls] and the lowest against P. aeruginosa (Bi = 1.63, 0.21 log growth inhibition, p less than 0.05). The antibacterial activity against S. aureus (Bi = 1.99, 0.3 log growth inhibition) and S. epidermidis (Bi = 2.0, 0.31 log growth inhibition) was within this range. When compared to peripheral blood polymorphonuclear leukocytes, PM reached only 4% (S. aureus) and 8.1% (E. coli) of their antibacterial activity (p less than 0.05). Using E. coli as a test organism, PM isolated after a 4-hour dialysis period revealed the highest antibacterial activity when compared to PM isolated after longer dialysis periods (p less than 0.05). Increasing the duration of PD to 6 and 8 h subsequently decreased the antibacterial activity of PM, suggesting that unphysiologic concentrations of toxic metabolites in the peritoneal effluent might have a harmful influence on PM functions.  相似文献   

13.
A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes and an array scanner for rapid detection, identification, and enumeration of Escherichia coli is described. The test utilizes Cy3-labeled peptide nucleic acid (PNA) probes complementary to a specific 16S rRNA sequence of E. coli. Samples were filtered and incubated for 5 h, the membrane filters were then analyzed by fluorescence in situ hybridization and results were visualized with an array scanner. Results were provided as fluorescent spots representing E. coli microcolonies on the membrane filter surface. The number of fluorescent spots correlated to standard colony counts up to 100 colony-forming units per membrane filter. Above this level, better accuracy was obtained with PNA FISH due to the ability of the scanner to resolve neighboring microcolonies, which were not distinguishable as individual colonies once they were visible by eye.  相似文献   

14.
The ftsZ (sulB) gene of Escherichia coli codes for a 40,000-dalton protein that carries out a key step in the cell division pathway. The presence of an ftsZ gene protein in other bacterial species was examined by a combination of Southern blot and Western blot analyses. Southern blot analysis of genomic restriction digests revealed that many bacteria, including species from six members of the family Enterobacteriaceae and from Pseudomonas aeruginosa and Agrobacterium tumefaciens, contained sequences which hybridized with an E. coli ftsZ probe. Genomic DNA from more distantly related bacteria, including Bacillus subtilis, Branhamella catarrhalis, Micrococcus luteus, and Staphylococcus aureus, did not hybridize under minimally stringent conditions. Western blot analysis, with anti-E. coli FtsZ antiserum, revealed that all bacterial species examined contained a major immunoreactive band. Several of the Enterobacteriaceae were transformed with a multicopy plasmid encoding the E. coli ftsZ gene. These transformed strains, Shigella sonnei, Salmonella typhimurium, Klebsiella pneumoniae, and Enterobacter aerogenes, were shown to overproduce the FtsZ protein and to produce minicells. Analysis of [35S]methionine-labeled minicells revealed that the plasmid-encoded gene products were the major labeled species. This demonstrated that the E. coli ftsZ gene could function in other bacterial species to induce minicells and that these minicells could be used to analyze plasmid-endoced gene products.  相似文献   

15.
Effects of nisin on growth of bacteria attached to meat.   总被引:10,自引:6,他引:4       下载免费PDF全文
Nisin had an inhibitory effect on gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, and Streptococcus lactis) but did not have an inhibitory effect on gram-negative bacteria (Serratia marcescens, Salmonella typhimurium, and Pseudomonas aeruginosa) attached to meat. Nisin delayed bacterial growth on meats which were artificially inoculated with L. monocytogenes or Staphylococcus aureus for at least 1 day at room temperature. If the incubation temperature was 5 degrees C, growth of L. monocytogenes was delayed for more than 2 weeks, and growth of Staphylococcus aureus did not occur. We also found that the extractable activity of nisin decreased rapidly when the meats were incubated at ambient temperatures and that this decrease was inversely related to the observed inhibitory effect. These findings disclosed that nisin delays the growth of some gram-positive bacteria attached to meat. However, nisin alone may not be sufficient to prevent meat spoilage because of the presence of gram-negative and other nisin-resistant gram-positive bacteria.  相似文献   

16.
Effects of nisin on growth of bacteria attached to meat   总被引:7,自引:0,他引:7  
Nisin had an inhibitory effect on gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, and Streptococcus lactis) but did not have an inhibitory effect on gram-negative bacteria (Serratia marcescens, Salmonella typhimurium, and Pseudomonas aeruginosa) attached to meat. Nisin delayed bacterial growth on meats which were artificially inoculated with L. monocytogenes or Staphylococcus aureus for at least 1 day at room temperature. If the incubation temperature was 5 degrees C, growth of L. monocytogenes was delayed for more than 2 weeks, and growth of Staphylococcus aureus did not occur. We also found that the extractable activity of nisin decreased rapidly when the meats were incubated at ambient temperatures and that this decrease was inversely related to the observed inhibitory effect. These findings disclosed that nisin delays the growth of some gram-positive bacteria attached to meat. However, nisin alone may not be sufficient to prevent meat spoilage because of the presence of gram-negative and other nisin-resistant gram-positive bacteria.  相似文献   

17.
目的探讨乳酸杆菌代谢产物对临床常见引起阴道炎的大肠埃希菌、铜绿假单胞菌、金黄色葡萄球菌、白色念珠菌、伤寒杆菌和肠球菌的抑菌作用。方法采用营养琼脂平板培养基定量涂菌,国际标准药敏杯给药的药敏试验法,检测乳酸杆菌代谢产物对大肠埃希菌、铜绿假单胞菌、金黄色葡萄球菌、白色念珠菌、伤寒杆菌和肠球菌的抑菌环的大小。结果乳酸杆菌代谢产物对大肠埃希菌、铜绿假单胞菌、金黄色葡萄球菌和伤寒杆菌有明显的抑菌作用,对肠球菌、白色念珠菌无抑菌作用。结论在临床上可应用乳酸杆菌及其制剂调节阴道微生态平衡,治疗细菌性阴道炎。  相似文献   

18.
AIMS: The utility of fluorescence in situ hybridization (FISH) for detecting uncultured micro-organisms in environmental samples has been shown in numerous habitats. In this study a suite of three FISH probes for cellulolytic bacteria is described and their efficacy is demonstrated by quantifying the relative abundance of the target micro-organisms in a range of industrial biomass samples. METHODS AND RESULTS: The probes were designed from data derived from an artificial landfill leachate reactor study and 16S rRNA gene databases. The original biomass sample proved to be well described by the three probes targeting a total of 51% of the bacterial (EUBMIX targeted) cells in quantitative FISH experiments. CONCLUSIONS: Three probes were developed and applied to samples from a range of industrial digesters. The CSTG1244 probe, specific for organisms closely related to Clostridium stercorarium, were observed in the widest range of samples (7 of the 19 samples tested). The CTH216a FISH probe, specific for organisms closely related to Clostridium thermocellum, described the highest proportion of the bacterial population within any one sample (46% in an anaerobically digested sludge sample). Finally, the BCE216a probe, specific for organisms closely related to Bacteroides cellulosolvens, achieved the lowest level of hybridisation of the three probes tested. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that the three groups of anaerobic cellulolytic micro-organisms were present in different bioreactors but at variable abundances ranging from low (where other organisms would have been responsible for cellulolysis) to high. We showed the potential of using group specific FISH probes and quantitative FISH in environmental studies. The utility of using newly designed FISH probes was demonstrated by their ability to detect and quantify the target bacterial groups in samples from a range of industrial wastewater digesters.  相似文献   

19.
A 32P-labeled fragment of DNA containing the speC gene, which encodes the biosynthetic enzyme ornithine decarboxylase of Escherichia coli, was used as a hybridization probe for homologous sequences in the genomes of gram-negative and gram-positive bacteria. The speC probe detected homologous sequences in the DNA of only four members of the Enterobacteriaceae (Citrobacter freundii, Salmonella typhimurium, Klebsiella pneumoniae, and Enterobacter aerogenes); no homology was detected with the DNA of other representative members of the Enterobacteriaceae and gram-negative and gram-positive bacteria.  相似文献   

20.
Y Endo  T Tani    M Kodama 《Applied microbiology》1987,53(9):2050-2055
Tertiary amine was covalently bonded to a polystyrene fiber and examined for antibacterial activity. The tertiary amine covalently bonded to a polystyrene fiber (TAF) showed a high antimicrobial activity against Escherichia coli. TAF exhibited a stronger antibacterial activity against gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens) than against gram-positive bacteria (Staphylococcus aureus and Streptococcus faecalis) or Candida albicans. This activity against E. coli was accentuated by 0.1% deoxycholate or 10 mg of actinomycin D per ml, to which E. coli is normally not susceptible. This implies that TAF causes an increase of the bacterial outer membrane permeability. On the other hand, the antimicrobial activity was inhibited by adding Mg2+ or by lowering the pH. This suggest an electrostatic interaction between the bacterial cell wall and TAF. Scanning electron microscopy showed that E. coli cells were initially attached to TAF, with many projections on the cell surface, but then were apparently lysed after contact for 4 h. Taken together, these results imply that bacteria initially interact with TAF by an electrostatic force between the anionic bacterial outer membrane and the cationic tertiary amine residues of TAF and that longer contact with TAF damages the bacterial outer membrane structure and increases its permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号