首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntington's disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.  相似文献   

2.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

3.
DiFiglia M 《Molecular cell》2002,10(2):224-225
N-terminal region of mutant huntingtin forms intranuclear and cytoplasmic aggregates in neurons that may contribute to neuronal death in Huntington's disease. show that different endoprotease-cleaved huntingtin fragments form nuclear and cytoplasmic inclusions.  相似文献   

4.
Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.  相似文献   

5.
BACKGROUND: Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS: High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS: In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS: These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.  相似文献   

6.
Involvement of macroautophagy in the dissolution of neuronal inclusions   总被引:4,自引:0,他引:4  
Ubiquitinated inclusions are a common feature of many neurodegenerative conditions. We have proposed that, at least in part, such inclusions may be formed due to dysfunction of the proteasome. We have modeled such proteasomal dysfunction by applying pharmacological inhibitors to cultured embryonic rat cortical neurons. This treatment leads to neuronal death and formation of ubiquitin/-synuclein-positive cytoplasmic inclusions. At late time points following proteasomal inhibition such inclusions are no longer discerned. Instead, many neurons accumulate small ubiquitinated aggregates, which may represent remnants of the inclusions. In this work we have examined a potential mechanism for inclusion dissolution. Electron microscopy images showed activation of macroautophagy at late time points after proteasomal inhibition. Labeling with LysoTracker Red, a dye that accumulates in acidic compartments, or immunostaining for the lysosomal enzyme Cathepsin D, showed an increase in globular staining. Cathepsin D co-localized partially with small ubiquitinated aggregates, but not inclusions. Application of an inhibitor of macroautophagy or of the vacuolar ATPase led to an increase in the number of inclusions and a decrease in small aggregates, whereas an activator of autophagy had the opposite effects. There was no significant change in apoptotic death following these manipulations. We conclude that, following proteasomal inhibition of cultured cortical neurons, there is activation of macroautophagy and of the lysosomal pathway. This activation results in dissolution of ubiquitinated inclusions into small aggregates, without directly impacting neuronal cell death. These data further support the idea that in this model inclusions and neuronal cell death are independent processes.  相似文献   

7.
The pathology of Huntington's disease is characterized by neuronal degeneration and inclusions containing N-terminal fragments of mutant huntingtin (htt). To study htt aggregation, we examined purified htt fragments in vitro, finding globular and protofibrillar intermediates participating in the genesis of mature fibrils. These intermediates were high in beta-structure. Furthermore, Congo Red, a dye that stains amyloid fibrils, prevented the assembly of mutant htt into mature fibrils, but not the formation of protofibrils. Other proteins capable of forming ordered aggregates, such as amyloid beta and alpha-synuclein, form similar intermediates, suggesting that the mechanisms of mutant htt aggregation and possibly htt toxicity may overlap with other neurodegenerative disorders.  相似文献   

8.
Developing neuronal populations undergo significant attrition by natural cell death. Dopaminergic neurons in the substantia nigra pars compacta undergo apoptosis during synaptogenesis. Following this time window, destruction of the anatomic target of dopaminergic neurons results in dopaminergic cell death but the morphology is no longer apoptotic. We describe ultrastructural changes that appear unique to dying embryonic dopaminergic neurons. In primary cultures of mesencephalon, death of dopaminergic neurons is triggered by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and differs ultrastructurally from both neuronal apoptosis or typical excitotoxicity. AMPA causes morphological changes selectively in dopaminergic neurons, without affecting other neurons in the same culture dishes. Two hours after the onset of treatment swelling of Golgi complexes is apparent. At 3 h, dopaminergic neurons display loss of membrane asymmetry (coinciding with commitment to die), as well as nuclear membrane invagination, irregular aggregation of chromatin, and mitochondrial swelling. Nuclear changes continue to worsen until loss of cytoplasmic structures and cell death begins to occur after 12 h. These changes are different from those described in neurons undergoing either apoptosis or excitotoxic death, but are similar to ultrastructural changes observed in spontaneous death of dopaminergic neurons in the natural mutant weaver mouse.  相似文献   

9.
Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington''s disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington''s disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death.  相似文献   

10.
11.
Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin-proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.  相似文献   

12.
Perturbation of histone acetyl-transferase (HAT) activity is implicated in the pathology of polyglutamine diseases, and suppression of the counteracting histone deacetylase (HDAC) proteins has been proposed as a therapeutic candidate for these intractable disorders. Meanwhile, it is not known whether mutant polyglutamine disease protein affects the HDAC activity in declining neurons, though the answer is essential for application of anti-HDAC drugs for polyglutamine diseases. Here, we show the effect of mutant huntingtin (htt) protein on the expression and activity of HDAC proteins in rat primary cortical neurons as well as in human Huntington's disease (HD) brains. Our findings indicate that expression and activity of HDAC proteins are not repressed by mutant htt protein. Furthermore, expression of normal and mutant htt protein slightly increased HDAC activity although the effects of normal and mutant htt were not remarkably different. In human HD cerebral cortex, HDAC5 immunoreactivity was increased in the nucleus of striatal and cortical neurons, suggesting accelerated nuclear import of this class II HDAC. Meanwhile, western blot and immunohistochemical analyses showed no remarkable change in the expression of class I HDAC proteins such as HDAC1 and HDCA8. Collectively, retained activity in affected neurons supports application of anti-HDAC drugs to the therapy of HD.  相似文献   

13.
Bak is generally recognized as a multidomain, pro-apoptotic member of the Bcl-2 family. Bak and Bax are functionally redundant in non-neuronal cells and represent a mitochondrial convergence point for cell death signaling pathways. This functional redundancy, however, may not exist in neurons in which the single deletion of Bax is sufficient to confer protection against a variety of cytotoxic insults. In the present study, we demonstrate that postnatal cortical and cerebellar granule neurons exclusively express an alternatively spliced, BH3 domain-only form of Bak (N-Bak), whereas astrocytes express only the full-length, multidomain form. Overexpression of N-Bak promotes Bax translocation in HeLa cells and induces neuronal cell death in cortical, hippocampal, and cerebellar granule neurons in a Bax-dependent manner. N-Bak interacts with Bcl-XL but not BAX, suggesting an indirect mechanism for promoting Bax translocation to the mitochondria. N-Bak message and protein levels are elevated in cortical neurons in response to DNA damage, and subsequent induction of neuronal death is significantly delayed by expressing a full-length Bak antisense plasmid. These results demonstrate that postnatal neurons solely express a BH3 domain-only form of Bak, which contributes to DNA damage-induced neuronal apoptosis. The absence of full-length Bak expression explains the near exclusive requirement for Bax in neuronal apoptosis.  相似文献   

14.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.  相似文献   

15.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

16.
Our recent study indicated that polyglutamine-expanded ataxin-7-Q75 induced apoptotic death of cultured cerebellar neurons by downregulating Bcl-x(L) expression and activating mitochondrial apoptotic cascade. Mutant polyglutamine-expanded proteins are believed to impair the proteolytic function of ubiquitin-proteasome system by sequestering components of proteasomes. Proteasome degradation of IkappaBalpha permits nuclear translocation of NF-kappaB and is required for continuous NF-kappaB activity, which supports the survival of cultured cerebellar neurons by inducing Bcl-x(L) expression. Thus, we tested the hypothesis that mutant ataxin-7-Q75 causes proteasome dysfunction and impairs NF-kappaB activity, leading to reduced Bcl-x(L) expression, caspase activation and cerebellar neuronal death. EMSA assays indicate that DNA-binding activity of NF-kappaB was significantly decreased in cerebellar neurons expressing ataxin-7-Q75. Similar to mutant ataxin-7-Q75, NF-kappaB inhibitor APEQ induced cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Mutant ataxin-7-Q75 inhibited the proteolytic activity of proteasomes in cerebellar neurons. Proteasome inhibitor MG132 also caused cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Both ataxin-7-Q75 and MG132 caused the cytosolic accumulation of IkappaBalpha in cerebellar neurons. Mutant ataxin-7-Q75 or MG132 increased the cytosolic level of NF-kappaB p65 and decreased the nuclear NF-kappaB p65 level. Our study provides the evidence that polyglutamine-expanded ataxin-7-Q75 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons.  相似文献   

17.
Huntington’s disease (HD) is caused by abnormal CAG repeat expansion in the 5′-end of the Huntingtin (HTT) gene. In addition to the canonical C-terminal full-length huntingtin (htt) nuclear export signal, a cytoplasmic localization-related domain (CLRD) in the N-terminus of htt has recently been reported. Here, we analyzed this domain by introducing deletion and substitution mutations in a truncated N-terminal htt protein and subsequently monitored htt expression, aggregation and subcellular localization by immunocytochemistry and Western blot analysis. We demonstrated that Htt4–17 was the essential sequence for htt cytoplasmic localization. We also found that the subcellular distribution of htt was altered when Htt1–17 was mutated to contain amino acids of different charges, suggesting a structural requirement of Htt1–17 for the cytoplasmic localization of htt. Deletion of the first three amino acids did not affect its association with mitochondria. We observed that defective cytoplasmic localization resulted in a reduction of total htt aggregates and increased nuclear aggregates, indicating that the subcellular distribution of the protein might influence the aggregation process. These studies provide new insight into the molecular mechanism of htt aggregation in HD.  相似文献   

18.
Huntington's disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号