首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian lectin galectin-3 is a potent stimulus of human neutrophils, provided that the receptor(s) for the lectin has been mobilized to the cell surface before activation. We have recently shown that the receptors for galectin-3 are stored in intracellular mobilizable granules. Here we show supportive evidence for this in that DMSO-differentiated (neutrophil-like) HL-60 cells, which lack gelatinase and specific granules, are nonresponsive when exposed to galectin-3. Neutrophil granules were subsequently used for isolation of galectin-3 receptors by affinity chromatography. Proteins eluted from a galectin-3-Sepharose column by lactose were analyzed on SDS-polyacrylamide gels and showed two major bands of 100 and 160 kDa and a minor band of 120 kDa. By immunoblotting, these proteins were shown to correspond to CD66a (160 kDa), CD66b (100 kDa), and lysosome-associated membrane glycoprotein-1 and -2 (Lamp-1 and -2; 120 kDa). The unresponsive HL-60 cells lacked the CD66 Ags but contained the Lamps, implying that neutrophil CD66a and/or CD66b may be the functional galectin-3 receptors. This conclusion was supported by the subcellular localization of the CD66 proteins to the gelatinase and specific granules in resting neutrophils.  相似文献   

2.
We examined the surface expression of lactoferrin by human neutrophils. Western blot analysis with anti-lactoferrin antibodies demonstrated the presence of a 78- to 79-kDa band in plasma membranes isolated from resting neutrophils that corresponded to the 78- to 79-kDa protein in neutrophil secondary granules. Flow cytometry using FITC-conjugated anti-lactoferrin antibodies confirmed that lactoferrin is expressed on the neutrophil surface. Preincubating the neutrophils in acidic (pH 3.9) buffer did not alter staining of the cells by the antibodies. Surface expression of lactoferrin was also detected on neutrophils in whole blood. Neutrophil activation by C5a or the calcium ionophore A23187 did not increase the surface expression of lactoferrin. Instead, the level of lactoferrin expression detected with one of two monoclonal antibodies was diminished after neutrophil activation, suggesting a possible conformational change in the lactoferrin. The surface-expressed lactoferrin may provide a mechanism for the interaction between lactoferrin-binding microorganisms and neutrophils.  相似文献   

3.
Two different types of FcRs for IgG are constitutively expressed on the surface of human neutrophils, namely, FcγRIIA (CD32a) and FcγRIIIB (CD16b). Unlike FcγRIIA, FcγRIIIb is GPI anchored to the cell membrane and its signal transduction is still ambiguous. To further understand the signal transduction of CD16b, we compared neutrophil cytokine expression and apoptosis by the cross-linking of CD32a and CD16b respectively. We found that both CD32a and CD16b crosslinking can activate neutrophils, but did not exactly share cytokine expression profiles. On the other hand, CD16b cross-linking retarded neutrophil apoptosis while CD32a promoted it. By interrupting the lipid raft with methyl-β-cyclodextrin (MβCD) and inhibiting the ITAM-SYK pathway with an SYK inhibitor (piceatannol), we found reduced apoptosis was at least partially mediated by lipid raft structure, but not the ITAM-SYK pathway. Additionally, CD16b but not CD32a cross-linking triggered SHP-2 phosphorylation and led to its translocation into lipid rafts. SHP-2 phosphorylation and translocation were inhibited by MβCD. Moreover, pre-inhibition of SHP-2 by a specific inhibitor (SHP099) converted IL-10 and SOCS3 expression level and promoted neutrophil apoptosis after CD16b crosslinking. In conclusion, these results, for the first time, collectively indicate that SHP-2 is activated by CD16b crosslinking in neutrophils and functions as a component of the raft-mediated signaling pathway.  相似文献   

4.

Background

COPD exacerbations are associated with neutrophilic airway inflammation. Adhesion molecules on the surface of neutrophils may play a key role in their movement from blood to the airways. We analysed adhesion molecule expression on blood and sputum neutrophils from COPD subjects and non-obstructed smokers during experimental rhinovirus infections.

Methods

Blood and sputum were collected from 9 COPD subjects and 10 smoking and age-matched control subjects at baseline, and neutrophil expression of the adhesion molecules and activation markers measured using flow cytometry. The markers examined were CD62L and CD162 (mediating initial steps of neutrophil rolling and capture), CD11a and CD11b (required for firm neutrophil adhesion), CD31 and CD54 (involved in neutrophil transmigration through the endothelial monolayer) and CD63 and CD66b (neutrophil activation markers). Subjects were then experimentally infected with rhinovirus-16 and repeat samples collected for neutrophil analysis at post-infection time points.

Results

At baseline there were no differences in adhesion molecule expression between the COPD and non-COPD subjects. Expression of CD11a, CD31, CD62L and CD162 was reduced on sputum neutrophils compared to blood neutrophils. Following rhinovirus infection expression of CD11a expression on blood neutrophils was significantly reduced in both subject groups. CD11b, CD62L and CD162 expression was significantly reduced only in the COPD subjects. Blood neutrophil CD11b expression correlated inversely with inflammatory markers and symptom scores in COPD subjects.

Conclusion

Following rhinovirus infection neutrophils with higher surface expression of adhesion molecules are likely preferentially recruited to the lungs. CD11b may be a key molecule involved in neutrophil trafficking in COPD exacerbations.  相似文献   

5.
FcgammaRIIIb (CD16) is a glycosyl phosphatidylinositol (GPI)-anchored low-affinity IgG receptor, exclusively expressed on human neutrophils. FcgammaRIIIb associates with complement receptor 3 (CR3, Mac-1, CD11b/CD18), which may indirectly link FcgammaRIIIb to the actin cytoskeleton. Upon neutrophil activation, apoptosis, or chemotaxis, FcgammaRIIIb is shed from the cell surface. In all of these events, actin rearrangements play an important role. To establish a role for the actin cytoskeleton in the control of FcgammaRIIIb shedding, we treated human neutrophils with jasplakinolide, an actin-polymerizing peptide. We show that enhanced actin polymerization induces time- and dose-dependent shedding of FcgammaRIIIb. This effect was not restricted to FcgammaRIIIb, because the cell surface expression of CD43, CD44, and L-selectin was also downregulated after induction of actin polymerization. This actin-dependent pathway is staurosporine sensitive but does not appear to involve activation of PKC or CR3. These data show that the actin cytoskeleton can regulate protein ectodomain shedding from human neutrophils.  相似文献   

6.
Leukocyte cell surface sialyl Lewis x (sLex) and related epitopes play an important role in cell rolling and adhesion during diapedesis via interaction with E-selectin. Here, we present evidence that Mac-1 (CD11b/CD18, CR-3) is a major neutrophil glycoprotein decorated with sLex and ligation of these carbohydrate moieties by anti-sLex antibody significantly impairs neutrophil functions. First, Western blot analysis shows that both CD11b and CD18 subunit of purified Mac-1 are decorated with sLex moieties. A significant co-localization of CD11b and sLex moieties is observed at neutrophil secondary granules. With stimulation of formyl-Met-Leu-Phe (fMLP), neutrophil surface labeling with anti-sLex antibody follows an identical up-regulation pattern of Mac-1. Second, protein-binding assays indicate that sLex moieties on Mac-1 are critical for binding interaction of Mac-1 to E-selectin. Removal of sLex moieties completely abolishes Mac-1-E-selectin binding. Finally, ligation of Mac-1 sLex by anti-sLex antibody induces a significant degranulation of neutrophil secondary granules at the absence of chemoattractant stimulation. This “dysregulated” degranulation induced by anti-sLex antibody strongly inhibits neutrophil transmigration in response to fMLP. In summary, Mac-1 sLex moieties play a critical role in regulating β2 integrin functions during neutrophil transmigration and degranulation.  相似文献   

7.
Fibrinogen promotes neutrophil activation and delays apoptosis   总被引:7,自引:0,他引:7  
The acute phase of the inflammatory response involves an increase in the concentrations of different plasma proteins that include fibrinogen (Fbg) and multiple proinflammatory mediators. In parallel, neutrophil activation is thought to play a crucial role in several inflammatory conditions, and it has been recently demonstrated that Fbg specifically binds to the alpha-subunit of CD11b/CD18 on neutrophil surface. Although several reports have shown that CD11b engagement modulates neutrophil responses, the effect of human Fbg (hFbg), one of CD11b physiologic ligands, has not been exhaustively investigated. We have now shown that incubation of purified neutrophils with hFbg induces a transient and rapid elevation of free intracellular Ca2+. This early intracellular signal is accompanied by changes in the expression of neutrophil activation markers, including enhancement of CD11b and CD66b, and down-regulation of FcgammaRIII. In addition, we have evaluated the effect of hFbg on two functional events related to expression and resolution of inflammation: cytotoxic capacity and rate of neutrophil apoptosis. We have found that activation of neutrophils by hFbg resulted in both enhancement of phagocytosis and Ab-dependent cellular cytotoxicity, and delay of apoptosis. We conclude that during inflammatory processes, soluble Fbg could influence neutrophil responses, increasing and prolonging their functional capacity.  相似文献   

8.
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.  相似文献   

9.
Neutrophils play an important role in the human immune system for protection against such microorganisms as a protozoan parasite, Trichomonas vaginalis; however, the precise role of neutrophils in the pathogenesis of trichomoniasis is still unknown. Moreover, it is thought that trichomonal lysates and excretory-secretory products (ESP), as well as live T. vaginalis, could possibly interact with neutrophils in local tissues, including areas of inflammation induced by T. vaginalis in humans. The aim of this study was to investigate the influence of T. vaginalis lysate on the fate of neutrophils. We found that T. vaginalis lysate inhibits apoptosis of human neutrophils as revealed by Giemsa stain. Less altered mitochondrial membrane potential (MMP) and surface CD16 receptor expression also supported the idea that neutrophil apoptosis is delayed after T. vaginalis lysate stimulation. In contrast, ESP stimulated-neutrophils were similar in apoptotic features of untreated neutrophils. Maintained caspase-3 and myeloid cell leukemia-1 (Mcl-1) in neutrophils co-cultured with trichomonad lysate suggest that an intrinsic mitochondrial pathway of apoptosis was involved in T. vaginalis lysate-induced delayed neutrophil apoptosis; this phenomenon may contribute to local inflammation in trichomoniasis.  相似文献   

10.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

11.
Although leukosialin (CD43) membrane expression decreases during neutrophil apoptosis, the CD43 molecule, unexpectedly, is neither proteolyzed nor internalized. We thus wondered whether it could be shed on bleb-derived membrane vesicles. Membrane blebbing is a transient event, hardly appreciated during the asynchronous, spontaneous apoptosis of neutrophils. Cell pre-synchronization at 15 degrees C made it possible to observe numerous blebbing neutrophils for a short 1-h period at 37 degrees C. CD43 down-regulation co-occurred with the blebbing stage and phosphatidylserine externalization, shortly after mitochondria depolarization and before nuclear condensation. Blebs detaching from the cell body were observed by time lapse fluorescence microscopy, and the release of bleb-derived vesicles was followed by flow cytometry. Phosphatidylserine externalization required caspases and protein kinase C (PKC) but not the myosin light chain kinase (MLCK). By contrast, bleb formation and release was caspase- and PKC-independent but required an active MLCK, whereas CD43 down-regulation involved caspases but neither PKC nor MLCK. Furthermore, CD43 appeared mostly excluded from membrane blebs by electron microscopy. Thus, CD43 down-regulation does not result from the release of bleb-derived vesicles. Ultracentrifugation of apoptotic cell supernatants made it possible to recover <1 microM microparticles, which contained the entire CD43 molecule. These microparticles expressed neutrophil membrane markers such as CD11b, CD66b, and CD63, together with CD43. In conclusion, we show that the three early membrane events of apoptosis, namely blebbing, phosphatidylserine externalization, and CD43 down-regulation, result from different signaling pathways and can occur independently from one another. CD43 down-regulation results from the shedding of microparticles released during apoptosis but unrelated to the blebbing.  相似文献   

12.
The expression of the carbohydrate antigen 3-fucosyl-N-acetyl-lactosamine (CD15, LeX) on human neutrophil glycoproteins has been studied by immunoprecipitation and immunoblotting by using monoclonal antibody MC2. The antigen is expressed on membrane glycoproteins of approximate molecular mass 165 and 105 kDa. These glycoproteins include the complement receptor and adhesion molecule, CR3, in which the beta-chain (CD18, 105 kDa) shows much greater expression than the alpha-chain (CD11b, 165 kDa). Most of the 165 kDa CD15 antigen is accounted for by expression on the carcinoembryonic antigen (CEA)-related molecule NCA160. Other members of this family, NCA95, NCA90 and NCA55, which are also found in neutrophils, do not express the CD15 antigen. There is a marked increase in the surface expression of CD15, CR3 and the antigen recognized by anti-CEA antibodies upon activation of neutrophils by the chemotactic peptide N-formylmethionyl-leucylphenylalanine.  相似文献   

13.
The role of the neutrophil in inflammatory diseases of the lung   总被引:7,自引:0,他引:7  
L A Boxer  R Axtell  S Suchard 《Blood cells》1990,16(1):25-40; discussion 41-2
Under certain circumstances, the neutrophil has been implicated in causing disease by damaging normal host tissue. This may occur in the adult respiratory distress syndrome (ARDS). The neutrophil has been implicated since a) substances that activate neutrophils are produced in association with the predisposing risks that lead to ARDS; b) activated neutrophils migrate into the alveolar spaces and their toxic products can be found in lung lavage fluid and in the breath of patients with ARDS; and c) the magnitude of the physiologic alterations correlate with the number of neutrophils in the alveolar space. Additionally, the neutrophils may be primed by substances which are released by activated platelets within the confines of the lung. Both platelet adenine nucleotides and the platelet-derived extracellular matrix protein (ECM), thrombospondin, can prime the neutrophil for subsequent O2- generation following activation of the cells with the chemotactic peptide, F-met-leu-phe (FMLP). Furthermore, neutrophils can be primed or O2- generation by the basement membrane ECM protein, laminin. Since neutrophils express receptors for both laminin and thrombospondin, these constituents may serve to modulate neutrophil behavior for subsequent oxidative metabolism and contribute to exacerbating pulmonary disease.  相似文献   

14.
Pulmonary accumulation of neutrophils is typical for active smokers who are also predisposed to multiple inflammatory and infectious lung diseases. We show that human neutrophil exposure to cigarette smoke extract (CSE) leads to an atypical cell death sharing features of apoptosis, autophagy and necrosis. Accumulation of tar-like substances in autophagosomes is also apparent. Before detection of established cell death markers, CSE-treated neutrophils are effectively recognized and non-phlogistically phagocytosed by monocyte-derived macrophages. Blockade of LOX-1 and scavenger receptor A, but not MARCO or CD36, as well as pre-incubation with oxLDL, inhibited phagocytosis, suggesting that oxLDL-like structures are major phagocytosis signals. Specific lipid (β-carotene and quercetin), but not aqueous, antioxidants increased the pro-phagocytic effects of CSE. In contrast to non-phlogistic phagocytosis, degranulation of secondary granules, as monitored by lactoferrin release, was apparent on CSE exposure, which is likely to promote pulmonary inflammation and tissue degradation. Furthermore, CSE-exposed neutrophils exhibited a compromised ability to ingest the respiratory pathogen, Staphylococcus aureus, which likely contributes to bacterial persistence in the lungs of smokers and is likely to promote further pulmonary recruitment of neutrophils. These data provide mechanistic insight into the lack of accumulation of apoptotic neutrophil populations in the lungs of smokers and their increased susceptibility to degradative pulmonary diseases and bacterial infections.  相似文献   

15.
Adhesion of neutrophils to substrate is initiated by receptor-ligand interactions that induce outside-in signaling. Inside-out signals and lateral interactions between surface molecules further fine tune the response. This study investigates the role of CD66 in adhesion of neutrophils to fibronectin, using domain-mapped monoclonal antibodies to CD66. Neutrophils express CD66a, CD66b, and CD66c on their surface. The neutrophil surface molecules that bind to fibronectin are the alpha(4)beta(1) and alpha(5)beta(1) integrins. Our results show that the monoclonal antibody Kat4c, which recognizes the AB domain of CD66a, b, and c and the polyclonal anti-CD66 (anti-carcinoembryonic antigen), augments neutrophil adhesion to fibronectin, while monoclonal antibodies to the individual CD66 antigens, the Fab fragment of Kat4c, and a mixture of the individual antibodies to CD66 antigens were unable to affect the adhesion. Thus heterodimerization of CD66a, b, and c is required for promoting neutrophil adhesion to fibronectin. The increased adhesion in presence of Kat4c was inhibited by antibodies to the beta(1) and beta(2) integrins. Antibody ligation of CD66 antigens causes their clustering and concomitant coclustering of the alpha(M) subunit of the beta(2) integrin, thereby activating the integrin. The sugar alpha-methyl mannoside inhibited anti-CD66-mediated clustering, indicating that a carbohydrate-lectin interaction may exist between CD66 and alpha(M) integrin. It also reduced the increased adhesion of neutrophils to fibronectin, suggesting that beta(2) integrin activation precedes beta(1) integrin activation. Further, the anti-CD66-mediated adhesion to fibronectin is accompanied by increased localization of Src family kinases (lyn and hck) to the cytoskeleton and an increase in their kinase activity. These results suggest that crosslinking of CD66a, CD66b, and CD66c promotes activation of the beta(2) integrin and in turn an alteration in the affinity of the beta(1) integrin, which enhances the adhesion of neutrophils to fibronectin.  相似文献   

16.
We have previously shown evidence for the existence of a calcium-independent, GTP-regulated mechanism of secretion from neutrophils, but this secretory mechanism remains to be fully elucidated. Cyclin-dependent kinase 5 (Cdk5), the various substrates of which include Munc18 and synapsin 1, has been implicated in neuronal secretion. Although the Cdk5 activator, p35, and Cdk5-p35 activity are primarily associated with neurons, we report here that p35 also exists in neutrophils and that an active Cdk5-p35 complex is present in these cells. Cdk5-p35 activity in human neutrophils is mostly localized in secretory granules, which show an increase in Cdk5-p35 level and activity upon GTP stimulation. The potent Cdk5 inhibitor, roscovitine, completely blocks GTP-stimulated granule Cdk5 activity, which accompanies lactoferrin secretion from neutrophil-specific granules. Roscovitine also inhibits GTP-induced lactoferrin secretion and surface localization of the secretion markers, CD63 and CD66b, to a certain extent. Furthermore, neutrophils from wild-type mice treated with roscovitine and neutrophils from p35(-/-) mice exhibit comparable surface expression levels of both CD63 and CD66b upon GTP stimulation. Although our data suggest that other molecules control GTP-induced secretion from neutrophils, it is clear that Cdk5-p35 is required to elicit the maximum GTP-induced secretory response. Our observation that multiple proteins in neutrophil granules serve as specific substrates of Cdk5 further supports the premise that the kinase is a key component of the GTP-regulated secretory apparatus in neutrophils.  相似文献   

17.
Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates.  相似文献   

18.
Accumulating evidence suggests that enhanced peroxynitrite (ONOO-) formation occurs during inflammation. We have studied the impact and the mechanisms of ONOO- action on expression of adhesion molecules on human neutrophils and coronary artery endothelial cells (HCAEC) and binding of neutrophils to HCAEC. Addition of ONOO- (0.1 to 200 5M) to isolated neutrophils resulted in a concentration-dependent down-regulation of L-selectin expression, and up-regulation of CD11b/CD18 expression. ONOO- stimulation of Erk activity was accompanied by activation of Ras, Raf-1 and MEK (mitogen-activated protein kinase kinase), and was sensitive to the MEK inhibitor PD 98059. We have observed a tight association between Erk activation and changes in CD11b/CD18 expression. ONOO- also evoked activation of neutrophil p38 MAPK. Neither ONOO--induced up-regulation of CD11b/CD18 expression nor Erk activation was affected by SB 203580, a selective inhibitor of p38 MAPK. ONOO- by itself had little effect on expression of ICAM-1 and E-selectin on HCAEC, whereas it markedly enhanced attachment of neutrophils to lipopolysaccharide-activated HCAEC only when it was added together with neutrophils. Increases in neutrophil adhesion evoked by ONOO- were blocked by an anti-CD18 monoclonal antibody. These data suggest that ONOO- activates Erk in neutrophils via the Ras/Raf-1/MEK signal transduction pathway, leading to up-regulation of surface expression of CD11b/CD18 and consequently to increased neutrophil adhesion to endothelial cells.  相似文献   

19.
The respiratory burst of human neutrophils is primed by a number of pro-inflammatory stimuli, including tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS); however, the mechanism of priming remains unknown. LPS has been shown previously to increase membrane expression of flavocytochrome b(558), a component of the NADPH oxidase. This study shows that TNFalpha also increases membrane expression of flavocytochrome b(558). Mitogen-activated protein kinase (MAPK) modules have been implicated in the action of priming agents. Pharmacologic inhibitors of MAPKs, SB203580 and PD098059, revealed that priming of the respiratory burst and up-regulation of flavocytochrome b(558) are dependent on p38 MAPK but not on extracellular-signal regulated kinase (ERK). TNFalpha and LPS primed respiratory burst activity and increased membrane expression of CD35 and CD66b, specific markers of secretory vesicles and specific granules that contain flavocytochrome b(558), with similar time courses and concentration dependences. These processes also required p38 MAPK but were independent of ERK. TNFalpha failed to prime respiratory burst activity or to increase membrane CD35 expression in enucleated neutrophil cytoplasts. These data suggest that one mechanism by which TNFalpha and LPS prime neutrophil respiratory burst activity is by increasing membrane expression of flavocytochrome b(558) through exocytosis of intracellular granules in a process regulated by p38 MAPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号