首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing. The basic organization of teneurins is highly conserved in Bilateria: all teneurins have epidermal growth factor (EGF) repeats, a cysteine-rich domain, and a large region identical in organization to the carboxy-half of prokaryotic YD-repeat proteins. Teneurins were not found in the genomes of sponges, cnidarians, or placozoa, but the choanoflagellate Monosiga brevicollis has a gene encoding a predicted teneurin with a transmembrane domain, EGF repeats, a cysteine-rich domain, and a region homologous to YD-repeat proteins. Further examination revealed that most of the extracellular domain of the M. brevicollis teneurin is encoded on a single huge 6,829-bp exon and that the cysteine-rich domain is similar to sequences found in an enzyme expressed by the diatom Phaeodactylum tricornutum. This leads us to suggest that teneurins are complex hybrid fusion proteins that evolved in a choanoflagellate via horizontal gene transfer from both a prokaryotic gene and a diatom or algal gene, perhaps to improve the capacity of the choanoflagellate to bind to its prokaryotic prey. As choanoflagellates are considered to be the closest living relatives of animals, the expression of a primitive teneurin by an ancestral choanoflagellate may have facilitated the evolution of multicellularity and complex histogenesis in metazoa.  相似文献   

2.
3.
4.
Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance.  相似文献   

5.
We have characterized chicken teneurin-1 and teneurin-2, two homologues of the Drosophila pair-rule gene product Ten-m and Drosophila Ten-a. The high degree of conservation between the vertebrate and invertebrate proteins suggests that these belong to a novel family. We propose to name the vertebrate members of this family teneurins, because of their predominant expression in the nervous system. The expression of teneurin-1 and -2 was investigated by in situ hybridization. We show that teneurin-1 and -2 are expressed by distinct populations of neurons during the time of axonal growth. The most prominent site of expression of chicken teneurins is the developing visual system. Recombinant teneurin-2 was expressed to assay its molecular and functional properties. We show that it is a type II transmembrane protein, which can be released from the cell surface by proteolytic cleavage at a furin site. The expression of teneurin-2 in neuronal cells led to a significant increase in the number of filopodia and to the formation of enlarged growth cones. The expression pattern of teneurins in the developing nervous system and the ability of teneurin-2 to reorganize the cellular morphology indicate that these proteins may have an important function in the formation of neuronal connections.  相似文献   

6.
In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including dorsal pouch epithelium, the optic lobe, and head sensory organs, including Bolwig's organ, the larval photoreceptor organ. We found that the optic lobe and larval photoreceptors share the same origin of a few adjacent cells near the center of mitotic domain 20, suggesting that within the mitotic domain, there is a subdomain from which the larval visual system is specified. In addition to the components of the larval visual system, this central region of mitotic domain 20 also generates a part of the eye-antennal disc placode; cells that gives rise to the adult visual system. We also observed that a significant amount of cell death occurred within this domain and used cell ablation experiments to determine the ability of the embryo to compensate for cell loss.  相似文献   

7.
The proteoglycan NG2 is expressed by immature glial cells in the developing and adult central nervous system. Using the COOH-terminal region of NG2 as bait in a yeast two-hybrid screen, we identified the glutamate receptor interaction protein GRIP1, a multi-PDZ domain protein, as an interacting partner. NG2 exhibits a PDZ binding motif at the extreme COOH terminus which binds to the seventh PDZ domain of GRIP1. In addition to the published expression in neurons, GRIP1 is expressed by immature glial cells. GRIP1 is known to bind to the GluRB subunit of the AMPA glutamate receptor expressed by subpopulations of neurons and immature glial cells. In cultures of primary oligodendrocytes, cells coexpress GluRB and NG2. A complex of NG2, GRIP1, and GluRB can be precipitated from transfected mammalian cells and from cultures of primary oligodendrocytes. Furthermore, NG2 and GRIP can be coprecipitated from developing brain tissue. These data suggest that GRIP1 acts as a scaffolding molecule clustering NG2 and AMPA receptors in immature glia. In view of the presence of synaptic contacts between neurons and NG2-positive glial cells in the hippocampus and the close association of NG2-expressing glial cells with axons, we suggest a role for the NG2.AMPA receptor complex in glial-neuronal recognition and signaling.  相似文献   

8.
9.
We describe the expression pattern of CEPU-1, a cell adhesion molecule of the immunoglobulin superfamily, in the early chick embryo brain. An initially broad domain of expression, encompassing forebrain, midbrain and anterior hindbrain, is subsequently narrowed down to a ring-shaped domain at the midbrain-hindbrain boundary, co-localizing precisely with the expression of Wnt1 at the isthmus. In addition, CEPU-1 is expressed in the dorsal aspect of rhombomere 4 and its emigrating neural crest cells. Later in development, we also find CEPU-1 expression in other parts of the developing nervous system such as sensory ganglia and in the ventral aspect of forebrain, midbrain and hindbrain.  相似文献   

10.
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.  相似文献   

11.
During vertebrate embryogenesis, the somites form by segmentation of the trunk mesoderm, lateral to the neural tube, in an anterior to posterior direction. Analysis of differential gene expression during somitogenesis has been problematic due to the limited amount of tissue available from early mouse embryos. To circumvent these problems, we developed a modified differential display PCR technique that is highly sensitive and yields products that can be used directly as in situ hybridisation probes. Using this technique, we isolated NLRR-1 as a gene expressed in the myotome of developing somites but not in the presomitic mesoderm. Detailed expression analysis showed that this gene was expressed in the skeletal muscle precursors of the myotome, branchial arches and limbs as well as in the developing nervous system. Somitic expression occurs in the earliest myoblasts that originate from the dorsal lip in a pattern reminiscent of the muscle determination gene Myf5, but not at the ventral lip, indicating that NLRR-1 is expressed in a subset of myotome cells. The NLRR genes comprise a three-gene family encoding glycosylated transmembrane proteins with external leucine-rich repeats, a fibronectin domain, an immunoglobulin domain and short intracellular tails capable of mediating protein-protein interaction. Analysis of NLRR-3 expression revealed regulated expression in the neural system in developing ganglia and motor neurons. NLRR-2 expression appears to be predominately confined to the adult. The regulated embryonic expression and cellular location of these proteins suggest important roles during mouse development in the control of cell adhesion, movement or signalling.  相似文献   

12.
It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord.  相似文献   

13.
14.
Cell death is a prominent feature of B cell development. For example, a large population of B cells dies at the pre-B cell stage presumably due to the failure to express a functional immunoglobulin receptor. In addition, developing B cells expressing antigen receptors for self are selectively eliminated at the immature B cell stage. The molecular signals that control B cell survival are largely unknown. The product of the bcl-2 proto-oncogene may be involved as its overexpression inhibits apoptotic cell death in a variety of biological systems. However, the physiological role of the endogenous Bcl-2 protein during B cell development is undetermined. Here we show a striking developmental regulation of the Bcl-2 protein in B lymphocytes. Bcl-2 is highly expressed in CD43+ B cell precursors (pro-B cells) and mature B cells but downregulated at the pre-B and immature B cell stages of development. We found that Bcl-2 expressed by B cells is a long-lived protein with a half-life of approximately 10 h. Importantly, susceptibility to apoptosis mediated by the glucocorticoid hormone dexamethasone is stage-dependent in developing B cells and correlates with the levels of Bcl-2 protein. Furthermore, expression of a bcl-2 transgene rescued pre-B and immature B cells from dexamethasone-induced cell death, indicating that Bcl-2 can inhibit the apoptotic cell death of progenitors and early B cells. Taken together, these findings argue that Bcl-2 is a physiological signal controlling cell death during B cell development.  相似文献   

15.
李兆英 《昆虫学报》2012,55(3):309-315
神经胶质作为视觉系统的重要成分之一, 对视觉系统的发育及功能起着重要的作用。本研究通过组织解剖观察、 免疫组织化学等技术, 对中华蜜蜂Apis cerana cerana幼虫和蛹的视觉系统中神经胶质的类型和发育过程进行了比较研究。研究表明: 在中华蜜蜂视觉系统中, 根据神经胶质的位置和形态主要分为表面神经胶质、 皮层神经胶质和神经纤维网神经胶质3种类型; 神经胶质主要来源于视柄和视叶中的神经胶质前体中心; 神经胶质细胞数量的增加一方面来自于细胞的迁移, 另一方面来自于神经胶质细胞自身的分裂增殖。本研究为昆虫神经胶质的发育以及功能研究提供理论基础。  相似文献   

16.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domain of brevican, a nervous system-specific lectican, and cell surface SGGLs acts as a novel cell recognition system that promotes neuronal adhesion and neurite outgrowth. The Ig chimera of the brevican lectin domain bind to the surface of SGGL-expressing rat hippocampal neurons. The substrate of the brevican chimera promotes adhesion and neurite outgrowth of hippocampal neurons. The authentic, full-length brevican also promotes neuronal cell adhesion and neurite outgrowth. These activities of brevican substrates are neutralized by preincubation of cells with HNK-1 monoclonal antibodies and by pretreatment of the brevican substrates with purified SGGLs. Brevican and HNK-1 carbohydrates are coexpressed in specific layers of the developing hippocampus where axons from entorhinal neurons elongate. Our observations suggest that cell surface SGGLs and extracellular lecticans comprise a novel cell-substrate recognition system operating in the developing nervous system.  相似文献   

17.
18.
Cone bipolar cells of the vertebrate retina connect photoreceptors with ganglion cells to mediate photopic vision. Despite this important role, the mechanisms that regulate cone bipolar cell differentiation are poorly understood. VSX1 is a CVC domain homeoprotein specifically expressed in cone bipolar cells. To determine the function of VSX1, we generated Vsx1 mutant mice and found that Vsx1 mutant retinal cells form but do not differentiate a mature cone bipolar cell phenotype. Electrophysiological studies demonstrated that Vsx1 mutant mice have defects in their cone visual pathway, whereas the rod visual pathway was unaffected. Thus, Vsx1 is required for cone bipolar cell differentiation and regulates photopic vision perception.  相似文献   

19.
The cellular and subcellular localization of the neural cell adhesion molecules L1 and N-CAM was studied by pre- and postembedding immunoelectron microscopic labeling procedures in the developing mouse cerebellar cortex. The salient features of the study are: L1 displays a previously unrecognized restricted expression by particular neuronal cell types (i.e., it is expressed by granule cells but not by stellate and basket cells) and by particular subcellular compartments (i.e., it is expressed on axons but not on dendrites or cell bodies of Purkinje cells). L1 is always expressed on fasciculating axons and on postmitotic, premigratory, and migrating granule cells at sites of neuron-neuron contact, but never at contact sites between neuron and glia, thus strengthening the view that L1 is not involved in granule cell migration as a neuron-glia adhesion molecule. While N-CAM antibodies reacting with the three major components of N-CAM (180, 140, and 120 kD) show a rather uniform labeling of all cell types, antibodies to the 180-kD component (N-CAM180) stain only the postmigratory granule cell bodies supporting the notion that N-CAM180, the N-CAM component with the longest cytoplasmic domain, is not expressed before stable cell contacts are formed. Furthermore, N-CAM180 is only transiently expressed on Purkinje cell dendrites. N-CAM is present in synapses on both pre- and post-synaptic membranes. L1 is expressed only preterminally and not in the subsynaptic membranes. These observations indicate an exquisite degree of fine tuning in adhesion molecule expression during neural development and suggest a rich combinatorial repertoire in the specification of cell surface contacts.  相似文献   

20.
Ephrins are cell surface-associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance and cell migration. EphA2, 3, and 4 receptors and one of their cognate ligands, ephrin-A2, are expressed by cells in the subventricular zone and ganglionic eminence of the embryonic day 14.5 telencephalon and by neural precursor cells in vitro. Activation of EphA receptors in dissociated neural precursor cells in vitro facilitates the commitment to neuronal fates. The majority of ephrin-A1-induced neurons is immunoreactive for tyrosine hydroxylase. Blocking the signal by the extracellular domain of EphA in forebrain slices results in a decrease in neurogenesis. Extracellular signal-regulated kinase is activated by the ligand binding to EphA receptors and is involved in the neurogenesis through EphA receptors. Rap1, but not Ras, is activated in response to ephrin-A1. Our results identify EphA receptors as positive regulators of the mitogen-activated protein kinase pathway that exerts neurogenesis of neural precursor cells from the developing central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号