首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mAb to rat cytochrome c (cyt c), totaling 556, were produced by individual clones of secondary B lymphocytes from nine groups of five BALB/c mice each in vitro using the splenic focus culture system. Inasmuch as rat and mouse cyt c are identical, these B cells can be considered specific for a self-antigen. The mAb were categorized into specificity groups based on their reactivities with a panel of seven cyts c that differ at two to six amino acid residues. The number of distinct specificities for the native protein was restricted to fewer than 20. Different groups of mice expressed the same specificities at comparable frequencies, including a single dominant one, and the total number of secondary cyt c-specific B cells was constant among groups of mice. This suggests that the acquisition of the secondary B cell specificity repertoire for this self-antigen is regulated. However, it is indeed possible that each specificity group may comprise a number of distinct mAb molecules that have arisen stochastically. Specificities expressed by as few as 1% of the total mAb were observed. Thus, it is likely that the identified specificities reflect the secondary B cell specificity repertoire for rat cyt c. The dominant specificity expressed by 50% of the mAb was characterized by elimination of antigen recognition as a result of replacement of aspartic acid by glutamic acid at position 62. Minor specificities expressed by 19% of the mAb were characterized by more subtle affects of an amino acid change at position 62 and/or an amino acid substitution from rat cyt c at position 60. Antibodies in other specificity groups reacted with epitopes in the region of residues 44 and 47. Whereas substitutions at positions 44, 47, 60, and 62 eliminated recognition by most of the mAb, changes at position 92 and at 103 also appeared to affect the binding of some mAb in the region around residues 60 and 62. The amino acid residues implicated in the recognition by murine mAb of murine cyt c have been shown previously to be involved in the epitopes of foreign mammalian cyt c. Therefore, self-tolerance cannot fully explain the restriction of the epitopes to these regions on foreign mammalian cyt c.  相似文献   

2.
By flow cytometry, a conformational change in mouse cytochrome c (cyt c) of apoptotic and necrotic T hybridoma cells was detected using a monoclonal antibody (mAb) that recognizes the region around amino acid residue 44 on a non-native form of the protein. The conformational change in cyt c is an early event in apoptosis, which can be identified in pre-apoptotic cells that are negative for other indicators of apoptosis. Since the mAb did not bind fixed and permeabilized live cells and did not immunoprecipitate soluble cyt c extracted with detergent from dead cells, it appears to recognize cyt cbound in a detergent-sensitive complex to other cellular components. Coincidentally, the mAb was also shown by competitive enzyme-linked immunosorbent assay to bind cyt c associated with synthetic phosphatidic acid vesicles. This suggests that the conformational change of cyt c in dying cells could be due to its association with intracellular membranes that are, perhaps, altered in cell death. By immunofluorescent confocal microscopy, conformationally altered cyt c in post-apoptotic T hybridoma cells showed a punctate distribution, indicating that it remained associated with mitochondria. Furthermore, the heavy membrane fraction of post-apoptotic cells but not of live cells was functional in caspase activation. This suggests that membrane-bound cyt c is the relevant caspase coactivation factor in the T hybridoma cells.  相似文献   

3.
Seven populations of site-specific antibodies were isolated from each of three sera of rabbits immunized against glutaraldehyde-polymerized horse cytochrome c. The antibodies were separated using an immunoadsorption scheme which employed the following cytochromes c: horse, beef, guanaco, rabbit, mouse testicular, pigeon, and the cyanogen-bromide cleaved fragment of the rabbit protein containing residues 1 to 65. The monovalent, antigen-binding fragments of the antibodies (Fab') gave 1:1 stoichiometries with native horse cytochrome c in fluorescence quenching assays. Cross-reactivities with heterologous cytochromes c using fluorescence quenching and a modified Farr assay demonstrated that the antigenic determinants are situated around residues 44, 60, and 89/92, four of the six amino acid sequence positions where horse and rabbit cytochromes c differ. The remaining two differences occur at residues 47 and 62. The apparent lack of immunogenicity of these two substitutions may result from the presence of the more immunogenic residues 44 and 60 nearby. Of the seven antibody populations isolated, four were shown to bind in the region of residues 89 and 92. Since several cytochromes c have amino acid sequence differences from the horse protein at either of these two residue positions, it was possible to fractionate the antibodies directed against this complex site on the basis of subtle specificity differences between them. Two antibody populations bind in the region of residue 44. One of these is specific for proline at that position, while the other antibody population also binds to cytochrome c containing glutamic acid at position 44. The remaining antibody population binds in the region of the lysine residue at position 60. Each of the seven site-specific antibody populations binds effectively to any cytochrome c having a suitable amino acid sequence in the antigenic determinant regardless of any residue differences from the immunogen outside of that area. It was also demonstrated that these seven antibody populations represent the totality of the antibodies elicited in rabbits against horse cytochrome c, since the immunoadsorbants bound all the antibodies specific for the native protein. Furthermore, the rabbit antisera contained no other antibody population that could bind to the conformationally disturbed, cyanogen bromide-cleaved fragment of horse cytochrome c containing residues 1 to 65, making it appear that there were no antibodies elicited against a "processed" form of cytochrome c.  相似文献   

4.
Testicular cytochrome c (cyt ct) was isolated from testes of sexually mature, rat, mouse, rabbit, and bull, among which rat testis is highly rich in cyt ct. By fusion of NS-1 myeloma cells and spleen cells of mice immunized with rat cyt ct, 11 stable mouse hybridoma cell lines were established. Using an enzyme-linked immunosorbent assay, it was determined that 4 of the 11 anti-rat cyt ct monoclonal antibodies (McAb) did not bind to somatic cyt c (cyt cs) of vertebrates nor to cyt ct of mouse, rabbit, and bull. Four other McAb showed no binding to cyt cs but showed different patterns of cross-reactivity with these four cyt ct. Therefore, these McAb appear to be very sensitive and useful probes for the discrimination or identification of extremely similar isocytochromes c. Although the primary amino acid sequences between cyt cs of rat and mouse are identical, the antigenic structure of cyt ct of rat and mouse are clearly distinct with regard to cross-reactivity with some anti-rat cyt ct McAb. Furthermore, these McAb also reveal that the primary amino acid sequences of cyt ct, which reflect differences in the surface conformation of the molecule, are probably species specific.  相似文献   

5.
To gain a better understanding of the diversity of epitopes on a protein, the specificities of 103 monoclonal antibodies to a model antigen, horse cytochrome c(cyt c), were analyzed. The antibodies were generated in in vitro monoclonal, secondary antibody responses against horse cyt c coupled to hemocyanin in splenic fragment cultures. For this assay, horse cyt c-primed murine B lymphocytes were transferred to irradiated, hemocyanin-primed recipients. A panel of seven mammalian cyts c differing at one to six residues out of 104 and cyanogen bromide-cleaved fragments of horse cyt c containing residues 1-65, 1-80, and 66-104 was used to examine the specificities of the antibodies. Twenty-two distinct reactivity patterns were observed, even though the majority of the monoclonal antibodies were found to bind in the three previously identified antigenic regions of the molecule about residues 44-47, 60-62, and 89-92. The results indicate that each of the three antigenic regions consists of multiple overlapping epitopes. Few of the antibodies directed to any given antigenic region bound polypeptide fragments inclusive of the epitope sequences, demonstrating that some antibodies were more conformationally dependent than others. Only 13% of the antibodies bound to cyanogen bromide-cleaved polypeptide fragments that together encompassed the entire length of the protein. Considering the large number of antibodies analyzed and the reoccurrence of 13 of the 22 clonotypes in different lymphocyte donors, it is likely that the antibody specificities tabulated herein approach yet do not completely enumerate the total inventory of the horse cyt c-specific B cell repertoire. The remarkable diversity for epitope recognition within antigenic regions observed here is likely to pertain to protein antigens in general, and strongly supports the widely held notion that the entire surface of a protein is potentially antigenic. The restriction of the epitopes of horse cyt c to three antigenic regions where the amino acid sequences of the mammalian cyts c differ probably results from tolerance of the mice to their own cyt c.  相似文献   

6.
Three homologous cytochromes c from horse, rabbit and tuna were subjected to chymotryptic digestion and their initial cleavage sites were identified. The sites in oxidized cytochromes c are the COOH-terminal sides of Tyr-48, Phe-46 and Tyr-46 for horse, rabbit and tuna cytochromes c, respectively. The results show that the chymotrypsin attacks a single site in each protein; the sites are located at the almost identical position on the polypeptide chain. Through the time-course studies of digestion, it was found that the three cytochromes c have different chymotrypsin-susceptibility at the initial cleavage site in the order of horse less than rabbit less than tuna. Studies on chymotryptic digestion of tuna cytochrome c in the reduced form revealed that the haem-reduction does not alter the initial cleavage site but increases the resistance to the proteolysis at the site. The uniqueness of the initial cleavage site in each cytochrome c species suggests that the protease susceptibility reflects some overall properties of the protein. At the same time, it was clarified that the initial cleavage site is also affected by a neighboring region by the fact that another potential cleavage site is located near the site in question. In order to elucidate the initial cleavage site, several physical properties of tuna cytochrome c molecule deduced from the X-ray 3D structure, accessible surface area, temperature factor, effective hydrophobicity and electrostatic potential, were compared with the experimental results and it was concluded that these properties given by a residue have no direct relationship with the chymotrypsin susceptibility.  相似文献   

7.
The analysis of the antigenic surface of staphylococcal nuclease was begun by generating and characterizing a panel of mAb. Twelve mAb were selected from a large number of anti-nuclease mAb and characterized for affinity and isotype, by their ability to block enzyme activity, and by complementation and competitive inhibition assays for the relative location of epitopes. The mAb were placed in complementation groups based on their distinct binding patterns. These groups define a series of eight overlapping epitopes that are estimated to cover a large portion of the nuclease surface. Four mAb blocked the enzyme activity of nuclease. The epitopes defined by two of these four mAb were localized on the surface of nuclease using single amino acid variant Ag generated by site-directed mutagenesis of the cloned nuclease coding sequence. mAb-25 maps to residue 46 which is located at the edge of the enzyme active site consistent with its ability to inhibit enzyme activity. mAb-19, which also blocks enzyme activity and belongs to the same complementation group as mAb-25, was unaffected by the substitution at position 46. This suggests that mAb-19 and mAb-25, if they do react with the same epitope, have differences in fine specificity. mAb-22 blocks enzyme activity and belongs to an overlapping complementation group. The fourth mAb, mAb-1, which belongs to a distinct, nonoverlapping, complementation group, does not blocks enzyme activity, and is directed to a region of nuclease that includes the amino acid at position 133. This residue is located a short distance from the active site in a region that has been suggested to participate in binding of DNA, a substrate for nuclease. Therefore, the four epitopes defined by these mAb are localized at or near the enzyme active site.  相似文献   

8.
The interaction of cytochrome c (cyt c) with mitochondrial mimetic vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and heart cardiolipin (PCPECL) was investigated over the 7.4-6.2 pH range by means of turbidimetry and photon correlation spectroscopy. In the presence of cyt c, the decrease of pH induced an increase in vesicle turbidity and mean diameter resulting from vesicle fusion as determined by a rapid decrease in the excimer/monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidylcholine (PyPC). N-acetylated cyt c and protamine, a positively charged protein, increased vesicle turbidity in a pH-independent manner, whereas albumin did not affect PCPECL vesicle turbidity. pH-dependent turbidity kinetics revealed a role for cyt c-ionizable groups with a pK(a)((app)) of approximately 7.0. The carbethoxylation of these groups by diethylpyrocarbonate prevented cyt c-induced vesicle fusion, although cyt c association to vesicles remained unaffected. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that Lys-22, Lys-27, His-33, and Lys-87 cyt c residues were the main targets for carbethoxylation performed at low pH values (<7.5). In fact, these amino acid residues belong to clusters of positively charged amino acids that lower the pK(a). Thus, at low pH, protonation of these invariant and highly conserved amino acid residues produced a second positively charged region opposite to the Lys-72 and Lys-73 region in the cyt c structure. These two opposing sites allowed two vesicles to be brought together by the same cyt c molecule for fusion. Therefore, a novel pH-dependent site associating cyt c to mitochondrial mimetic membranes was established in this study.  相似文献   

9.
The murine T cell proliferative response to the carboxyl terminal cyanogen bromide cleavage fragment 81-104 of pigeon cytochrome c (cyt) has been studied. Two interesting properties of this response have been previously described. First, T cells from B10.A mice primed with pigeon cyt 81-104 show more vigorous proliferation when restimulated with moth cyt 81-103 than when stimulated with pigeon cyt 81-104; that is, the B10.A T cell response to pigeon shows heteroclitic restimulation by moth. Second, T cells primed with the acetimidyl derivative (Am) of pigeon cyt 81-104 did not cross-react with the unmodified cyt fragments, but Am-moth cyt 81-103 still stimulated Am-pigeon cyt 81-104 primed T cells better than the Am-pigeon cyt 81-104 fragment. These results raised the issue of whether the antigenic sites on the fragments responsible for the specificity of T cell priming in vivo differed from the residues that contributed to the heteroclitic response of pigeon (or Am pigeon)-primed T cells to moth cyt c fragments. In this paper, synthetic peptide antigens were tested in order to identify which residues caused the heterocliticity of the moth fragment and which residues were involved in the antigenic differentiation of native and derivatized fragments. The heterocliticity of the T cell response to moth fragment 81-103 was found to be due to the deletion of the penultimate residue (Ala103) from the pigeon fragment. However, the ability to cause heterocliticity was not uniquely a property of this deletion. T cells from animals primed with peptides containing substitutions at positions 100 or 102 were also heteroclitically stimulated by the moth-like antigen. The observation that T cells could not be primed for recognition of the changes in peptide sequence that caused heteroclitic stimulation suggests that T cells do not directly recognize determinants in this region. The antigenically significant site of derivatization for T cell priming was found to be Lys99. Furthermore, substitution of a Gln at position 99 also resulted in elicitation of yet a third set of T cell clones specific for the presence of that residue. That is, the specificity of the primed T cell population was found to be altered by changes at residue-99, but no such alterations in specificity were demonstrable when T cells primed with peptides altered at residue-103, residue-102, or residue-100 were compared. Overall, the results demonstrate that the antigen can be divided into two functionally distinct sites that are in close physical proximity.  相似文献   

10.
We have previously described the isolation of two hybridoma variants secreting higher avidity IgM (D5 and 7F5), starting from the E11 hybridoma cell line, which produces an antibody specific for the A Ag of the ABO blood group system. In order to explain at the molecular level this increased reactivity, cDNA encoding the H and L chains of the E11, D5, and 7F5 mAb were cloned and sequenced. Comparison of the nucleotide sequences showed a single point mutation in each of the two mAb produced by the hybridoma variants. The mutations were both located in the H chain C region and caused a Ser to Phe substitution at position 565 in the D5 mAb and a Asn to Tyr substitution at position 563 in the 7F5 mAb. Both substitutions modified the consensus glycosylation sequence (Asn-X-Ser/Thr) located in the tail piece of the secretory mu-chain. The absence of glycosylation at this site was confirmed by CNBr cleavage of the [14C]mannose-labeled mAb. The two single point mutations were solely responsible for the increased avidity of the antibodies, as confirmed by site-directed mutagenesis of the E11 mu-chain and serologic analysis of the mutated E11 antibodies. We conclude that the absence of glycosylation at Asn 563 is responsible for the increased avidity of the mutant, possibly by altering the quaternary structure of the IgM polymer. To our knowledge, this is the first report that point mutations in the H chain C region can influence the reactivity of IgM mAb.  相似文献   

11.
Abstract Site-directed mutagenesis of the lamB gene was used to introduce individual cysteine substitutions at 20 sites in two regions (surface loops L7 and L8) of LamB protein significant in antibody recognition. Characterisation of cysteine mutants involved immunoblotting with three surface-specific monoclonal antibodies (mAb72, mAb302, mAb347) before and after incubation with thiol-specific reagents. In contrast to an earlier study that showed no amino acid changes affecting recognition by all three antibodies, changes at six amino acids were found to influence a common core epitope. These core sites included one residue (T336) in the predicted loop L7 containing amino acids 329–342 and four (Y379, N387, N389, K392, F398) in the large surface loop involving residues 370–412. Individual antibodies made additional but distinct contacts within the two studied regions, with mAb347 binding the most different and affected by seven substitutions in the 328–338 regions. The lamB mutants were also tested for phage λ receptor activity and starch binding before and after thiol modification and were useful in extending previous maps of these ligand binding sites.  相似文献   

12.
The isolated cytochrome (cyt) b(6)f complex from spinach is inhibited by Cu(2+) with a K(D) of about 1 microM at pH 7.6 in the presence of 1.6 microM decyl-plastoquinol (C(10)-PQH(2)) as a substrate. Inhibition was competitive with respect to C(10)-PQH(2) but noncompetitive with respect to horse heart cyt c or plastocyanin (PC). Inhibition was also pH-sensitive, with an apparent pK at about 7, above which inhibition was stronger, suggesting that binding occurred at or near a protonatable amino acid residue. Equilibrium binding titrations revealed ca. 1.4 tight Cu(2+) binding sites with a K(D) of about 0.5 microM and multiple (>8) weak (K(D) > 50 microM) binding sites per complex. Pulsed electron paramagnetic resonance (EPR) techniques were used to identify probable binding sites for inhibitory Cu(2+). A distinct enhancement of the relaxation time constant for the EPR signal from bound Cu(2+) was observed when the cyt f was paramagnetic. The magnitude and temperature-dependence of this relaxation enhancement were consistent with a dipole interaction between Cu(2+) and the cyt f (Fe(3+)) heme at a distance of between 30 and 54 A, depending upon the relative orientations of Cu(2+) and cyt f heme g-tensors. Two-pulse electron spin-echo envelope modulation (ESEEM) and 4-pulse 2-dimensional hyperfine sublevel correlation (2D HYSCORE) measurements of Cu(2+) bound to isolated cyt b(6)f complex indicated the presence of a weakly coupled nitrogen nucleus. The nuclear quadrupole interaction (NQI) and the hyperfine interaction (HFI) parameters identified one Cu(2+) ligand as an imidazole nitrogen of a His residue, and electron-nuclear double resonance (ENDOR) confirmed the presence of a directly coordinated nitrogen. A model of the 3-dimensional structure of the cytochrome b(6)f complex was constructed on the basis of sequences and structural similarities with the mitochondrial cyt bc(1) complex, for which X-ray structures have been solved. This model indicated three possible His residues as ligands to inhibitory Cu(2+). Two of these are located on the "Rieske" iron-sulfur protein protein (ISP) while the third is found on the cyt f protein. None of these potential ligands appear to interact directly with the quinol oxidase (Q(o)) binding pocket. A model is thus proposed wherein Cu(2+) interferes with the interaction of the ISP protein with the Q(o) site, preventing the binding and subsequent oxidation of plastoquinonol. Implications for the involvement of ISP "domain movement" in Q(o) site catalysis are discussed.  相似文献   

13.
目的:制备稳定分泌抗人生长分化因子15(GDF15)单克隆抗体(m Ab)的杂交瘤细胞系,并对其分泌的m Ab进行鉴定。方法:根据人GDF15氨基酸序列特征,设计合成了8条能够免疫产生GDF15特异性抗体的抗原多肽,与VLP载体偶联后,免疫雌性BALB/c小鼠,利用杂交瘤技术制备鼠源抗人GDF15的m Ab,用间接ELISA检测m Ab腹水效价。结果:获得针对7个抗原多肽的12株稳定分泌抗人GDF15的杂交瘤细胞系,腹水m Ab效价可达1×104~1×109。结论:获得了针对不同抗原多肽的抗人GDF15的特异性m Ab,为进一步研发以GDF15为靶点的单克隆抗体抗肿瘤药物奠定了基础。  相似文献   

14.
In an attempt to further evaluate the role of Thy-1 in the antigen-independent triggering of mouse T cells, we have examined the activating properties of two Thy-1.1-specific mouse monoclonal antibodies (mAb). These reagents were established from an (A.TH X A.TL)F1 hybrid mouse (Thy-1b) immunized with IL-2 producing (BALB/c (Thy-1b) X BW5147 (Thy-1a)) T hybridoma cells. Although both mAb recognized the same Thy-1.1 determinant, one mAb of the gamma 3,kappa class (H171-146) was found to induce several T hybridoma cells to produce IL-2, and AKR thymocytes or cloned helper T cells to proliferate, whereas another mAb of the gamma 1,kappa class (H171-112) failed to do so even in the presence of phorbol myristic acetate (PMA). Increased IL-2 responses of T hybridoma cells were observed when the cell bound Thy-1.1-specific mAb were crosslinked by goat anti-mouse Ig (GaMIg) antibodies. Both a T-cell activating rat anti-Thy-1.2 mAb and the anti-Thy-1.1 mAb H171-146, although directed at distinct cell surface molecules, synergistically stimulated IL-2 production by T hybridoma cells. In addition, the mouse mAb H171-146 was found to stimulate LOU/M rat thymocytes to proliferate in the presence of exogenous IL-2. These data demonstrate that T cells can use Thy-1 as a signal-transducing molecule in both mouse and rat species, and support the notion that the activating properties of Thy-1.1-specific mAb are influenced by their heavy chain isotypes.  相似文献   

15.
A V region mutant producing an antibody that had lost the ability to bind phosphocholine was isolated from a hybridoma producing a germline encoded T15 antibody. The mutation resulted in a single aspartic acid to asparagine substitution at residue 95 of the H chain V region. This confirms that the aspartic acid at residue 95 plays a major role in Ag binding. The results also suggest that somatic cell genetic techniques can be used to generate mAb with useful changes in Ag binding.  相似文献   

16.
Cytochrome c oxidase (CcO) catalyzes the reduction of molecular oxygen to water using ferrocytochrome c (cyt c(2+)) as the electron donor. In this study, the oxidation of horse cyt c(2+) by CcO from Rhodobacter sphaeroides, was monitored using stopped-flow spectrophotometry. A novel analytic procedure was applied in which the spectra were deconvoluted into the reduced and oxidized forms of cyt c by a least-squares fitting method, yielding the reaction rates at various concentrations of cyt c(2+) and cyt c(3+). This allowed an analysis of the effects of cyt c(3+) on the steady-state kinetics between CcO and cyt c(2+). The results show that cyt c(3+) exhibits product inhibition by two mechanisms: competition with cyt c(2+) at the catalytic site and, in addition, an interaction at a second site which further modulates the reaction of cyt c(2+) at the catalytic site. These results are generally consistent with previous reports, indicating the reliability of the new procedure. We also find that a 6×His-tag at the C-terminus of the subunit II of CcO affects the binding of cyt c at both sites. The approach presented here should be generally useful in spectrophotometric studies of complex enzyme kinetics. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

17.
Rabbit, mouse, and guanaco cytochromes c differ from each other by only two amino acid residues. The identification is described of all of the antigenic determinants of mouse and guanaco cytochrome c that elicit an antibody response in rabbits, and those of the rabbit and guanaco proteins that elicity antibodies in the mouse. All except one of these sites center around single amino acid residue differences between the antigen and the host cytochrome c. The corresponding antibody popylations bind only to the areas of the protein in which the substitutions occur. Such antigenic determinants manifested in rabbits by quanaco and mouse cytochromes c are centered around residues 62 and 89, and residues 44 and 89, respectively. Similarly, the mouse recognizes sites containing residues 44 and 62 in guanaco cytochrome c, and residues 44 and 89 in rabbit cytochrome c. In none of these instances has a change in sequence failed to produce an antibody response. Each of these determinants appears to elicit and bind to its antibody, independently of other determinants present on the protein. In addition, two different autoantigenic responses have been detected. The antibodies produced against the determinant formed by glutamyl residue 62 of the guanaco protein in both rabbits and mice, the cytochromes c of which carry an aspartyl residue in that position, also bind to the aspartyl-containing region but with lower affinity. However, mouse and rabbit cytochrome c also elicit antibodies to the area of residue 62 in rabbits and mice, respectively, and these antibodies still bind more strongly to the glutamyl-than to the aspartyl-containing determinant. This last response occurs only when there are residue substitutions elsewhere in the molecule, because mice and rabbits fail to respond to their own cytochrome c. Antibodies produced in mice against the change from alanyl to valyl residue 44 by rabbit and guanaco cytochromes c also bind to the alanyl-containing determinant, except less tightly than to the valyl region. Conversely, antibodies raised in rabbits against the change from valyl to alanyl residue 44 only bind to this region when it carries an alanine. It is suggested that antigenic determinants that arise as a result of amino acid residue substitutions between the immunizing and the corresponding host protein, without a change in the spatial arrangement of the polypeptide backbone, be termed topographic determinants.  相似文献   

18.
1. The complete amino acid sequence of cytochrome c from the basidiomycete Ustilago sphaerogena was determined from the amino acid compositions and sequences of either tryptic or chymotryptic peptides, and in homology with at least thirty other established sequences of cytochrome c. 2. The primary structure of the molecule bears all of the characteristics of a mammalian-type cytochrome c, showing the typical clustered distribution of hydrophobic and basic residues with a single polypeptide chain of 107 residues. 3. Like all other fungal cytochromes c, it possesses a free N-terminus, and one less residue at the C-terminus than vertebrate cytochromes c. The region of residues 70-80 is strictly conserved, as is histidine at position 18. Position 26 is occupied by an asparagine residue, in contrast to histidine which occurs at this location in most of the known sequences of mammalian-type cytochromes c. 4. In contrast to some other fungal and plant cytochromes c of known primary structures, the Ustilago cytochrome c molecule does not contain trimethyl-lysine. 5. The sequence of Ustilago cytochrome c differs from the sequences of human, horse, chicken, tuna, wheat, and baker's yeast proteins at loci 47, 43, 44, 44 and 38 respectively.  相似文献   

19.
Human HB4C5 hybridoma cells produce a lung cancer-specific IgM human monoclonal antibody (mAb). HB4C5 human mAb cross-reacts with Candida cytochrome c (Cyt c) and carboxypeptidase (Cpase). Concanavalin A (ConA)-resistant variants of HB4C5 cells loss the original light chain followed by expression of various new light chains at a high incidence (light chain shifting) (Tachibana et al., 1996). HTD8 cells, one of the ConA-resistant variant subclones of HB4C5 cells, undergo the active light chain shifting and produce various sublines, each of which stably secretes new mAb consisting of a new light chain and a HB4C5 heavy chain. The new mAb exhibits altered antigen binding ability from that of the original antibody. We could expect that HTD8 cells can be used as ‘a light chain stem cell line’ to improve antigen binding ability and specificity of established human mAbs. A BD9D12 IgG human mAb recognizes lung cancer cells and cross-reacts with cytokeratin 8. Introduction of the heavy chain gene of BD9D12 mAb into HTD8 cells resulted in establishment of various sublines which secreted various kinds of hybrid antibodies consisting of different light chains derived from HTD8 subclones which underwent light chain shifting and a common IgG heavy chain derived from BD9D12. These hybrid antibodies exhibited different or improved reactivities to Cyt, Cpase, cytokeratin 8 and various cancer cells from those of parental mAb, demonstrating that light chain shifting can be applied to improve the affinity and specificity of human mAb. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
To determine the region of human tumor necrosis factor-alpha (TNF-alpha), essential for cytotoxic activity against mouse L-M cells, single amino-acid-substituted TNF-alpha mutant proteins (muteins) were produced in Escherichia coli by protein engineering techniques. An expression plasmid for TNF-alpha was mutagenized by passage through an E. coli mutD5 mutator strain and by oligonucleotide-directed mutagenesis. Approximately 100 single amino-acid-substituted TNF-alpha muteins were produced and assayed for cytotoxic activity. The cytotoxic activities of purified TNF-alpha muteins, e.g. TNF-31T, -32Y, -82D, -85H, -115L, -141Y, -144K and -146E, were less than 1% of that of parent TNF-alpha. These results indicate that the integrity of at least four distinct regions of the TNF-alpha molecule is required for full biological activity. These regions are designated as follows: region I, from position 30 to 32; region II, from position 82 to 89; region III, from position 115 to 117; region IV, from position 141 to 146. In addition, TNF-141Y could not completely compete with parent TNF-alpha for binding to the receptor. This demonstrates that region IV, and at least aspartic acid at position 141, must be involved in the TNF receptor binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号