首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To investigate how various concentrations of serum prolactin (PRL) influence the priming effect of luteinizing hormone releasing hormone (LH-RH) on the pituitary gland, 24 women with various blood PRL concentrations received intravenous injections of 100 micrograms of synthetic LH-RH twice at an interval of 60 minutes and their serum LH and follicle-stimulating hormone (FSH) were measured and analysed. In the follicular phase with a normal PRL concentration (PRL less than 20 ng/ml, n = 6), marked first peaks of the two hormones following the first LH-RH stimulation and enhanced second peaks after the second LH-RH administration were observed, indicating a typical priming effect of LH-RH on gonadotropins, though the second response of FSH was more moderate than that of LH. In hyperprolactinemia, in which the serum PRL concentration was higher than 70 ng/ml (n = 13), the basal concentration of gonadotropins was not significantly changed but the priming effect of LH-RH on LH and FSH was significantly decreased (p less than 0.01). No marked second peaks of LH and FSH were observed, suggesting an inhibitory effect of hyperprolactinemia on the second release of LH and FSH. In contrast, this effect was restored in a group of women whose serum PRL concentration was between 30 and 50 ng/ml (n = 5). Furthermore, enhanced second peaks of both LH and FSH were noted after successful bromocriptine therapy reduced hyperprolactinemia (PRL greater than 70 ng/ml) to less than 25 ng/ml (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
DBcAMP significantly increased the release of GH but not of LH, FSH, TSH, or PRL, except in the presence of hypothalamic extract when it augmented the release of LH, FSH, and GH, reversed the inhibition of PRL, but did not further influence TSH release. Theophylline increased release of GH and PRL while inducing increased tissue content of cAMP without consistently increasing the release of TSH, LH, or FSH. Hypothalamic extractor K+-stimulated hormone rel-ase was consistently and significantly potentiated by theophylline. Neither hypothalamic extract, increased [K+], or synthetic TRH and LRH were able to raise tissue content of cAMP while producing their expected effects on hormone release. Cholera enterotoxin produced a highly significant increase in tissue content of the cyclic nucleotide but increased the release of GH only, and not that of LH, FSH, TSH, or PRL. DBcAMP was able to lower the threshold concentration of K+ required to stimulate release of GH, LH, and FSH and also to augment K+-stimulated release to the higher levels induced by the hypothalamic releasing hormones. It did not augment K+-induced release of TSH.  相似文献   

3.
The actions of two inhibin preparations and cycloheximide on gonadotropin release were investigated in superfused pituitary cell cultures. Pituitary cells isolated from 18-day-old male rats were grown in Matrigel-coated superfusion chambers in chemically defined medium. After stationary culture for 4 days, the cell monolayers were superfused at a constant speed (0.25 ml/min) and were intermittently stimulated (6 min/h) with 10 nM gonadotropin-releasing hormone (GnRH). Groups of cultures were exposed to the test substances for varying time periods during stationary culture and/or during superfusion. Inhibitory effects of both inhibin preparations on the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in response to GnRH pulses were observed after 2 h of exposure and became maximal after about 6 h. Basal secretion of FSH between GnRH pulses was also suppressed, whereas the basal interpulse secretion of LH was not changed. When exposure to inhibin was discontinued, the secretion of both FSH and LH progressively increased and returned to control values by approximately 6 h. Cycloheximide (500 ng/ml) affected gonadotropin release with dynamics similar to those observed for the inhibin preparation. These data support the hypothesis that inhibition of gonadotropin synthesis may be an important step in the molecular mechanism of action by which inhibin regulates gonadotropin release.  相似文献   

4.
Numerous biochemical pathways influence the synthesis and release of anterior pituitary hormones. Releasing factors extracted from the hypothalamus and prostaglandins (PGs) appear to alter a common biochemical activity, adenyl cyclase, in pituitary cells. Luteinizing hormone releasing hormone (LRH), prostaglandin (PGE1), 7 oxa-13-prostynoic acid and cycloheximide were tested for individual and interacting effects on the in vitro release of FSH, LH and prolactin from hemipituitaries of 15 day old female rats. LRH (10 ng/ml) consistently released both LH and FSH in all in vitro experiments and inhibited prolactin release in 1 of 2 experiments. Lower concentrations (5 and 1 ng/ml) also stimulated LH and FSH release but did not influence prolactin release. Concurrent depletion of stored LH and FSH in the gland was observed. PGE1 in a 6.5 hour incubation increased the storage of LH within the gland in the absence of LRH. In a 1.5 hour incubation in the presence of LRH, storage of LH was also increased. PGE1 had no effect on LH and FSH release; however, in 1 of 2 experiments it stimulated prolactin release in the absence of LRH. Prostynoic acid stimulated LH and FSH release but did not synergize with LRH action in the same tissue. Cycloheximide did not affect LH release during the first 30 minutes of incubation; however, the release during the subsequent 1 hour was significantly inhibited. Similar tissue also exposed to cycloheximide was still responsive to LRH during the latter 1 hour incubation period. Cycloheximide had no effect on prolactin storage and release from the same tissue.  相似文献   

5.
The role of extracellular Ca2+ in pituitary hormone release was studied in primary cultures of rat anterior pituitary cells. The basal levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH), and adrenocorticotropin (ACTH) secretion were independent of extracellular Ca2+ concentration ([Ca2+]e). In contrast, the basal levels of growth hormone (GH) and prolactin (PRL) release showed dose-dependent increases with elevation of [Ca2+]e, and were abolished by Ca2+-channel antagonists. Under Ca2+-deficient conditions, BaCl2 mimicked the effects of calcium on PRL and GH release but with a marked increase in potency, and also increased basal LH and FSH release in a dose-dependent manner. In the presence of normal [Ca2+]e, depolarization with K+ maximally increased cytosolic [Ca2+] ([Ca2+]i) from 100 to 185 nM and elevated LH, FSH, TSH, ACTH, PRL, and GH release by 7-, 5-, 4-, 3-, 2-, and 1.5-fold, respectively. These effects of KCl were abolished in Ca2+-deficient medium or in the presence of the Ca2+-channel antagonist, Co2+, and were diminished by the dihydropyridine Ca2+-channel antagonist, nifedipine. The Ca2+-channel agonist BK 8644 (100 nM) enhanced the hormone-releasing actions of 25 mM KCl upon PRL, LH, FSH, GH, TSH, and ACTH by 2.3-, 2.0-, 1.8-, 1.7-, 1.6-, and 1.4-fold, respectively. The dose- and voltage-dependent actions of BK 8644 were specific for individual cell types; BK 8644 enhanced GH, PRL, TSH, LH, and ACTH secretion in the absence of any depolarizing stimulus, with ED50 values of 8, 10, 150, 200, and 400 nM, respectively. However, in the presence of 50 mM KCl, the ED50 values for BK 8644 were 1.5, 2, 3, 5, and 7 nM for GH, PRL, ACTH, TSH, and LH, respectively. [3H]BK 8644 bound specifically to pituitary membranes with Kd values of 0.8 nM and concentrations of about 900 channels per cell. These observations provide evidence for the presence and participation of voltage-sensitive calcium channels in the secretion of all five populations of anterior pituitary cells.  相似文献   

6.
Interspecific somatic cell hybrid clones have been isolated and characterized in order to study growth hormone (GH) and prolactin (PRL) gene expression. Rat pituitary tumor cells (GH3, 69 chromosomes) secreting rat GH and PRL were grown for 48 h together with nonhormone secreting, aminopterin-sensitive murine fibroblast cells (LMTK-, 55 chromosomes) and fused using polyethylene glycol. Resultant heterokaryons were selected in hypoxanthine-aminopterin-thymidine (HAT) medium and cloned. Five clones produced rat GH and PRL. Hormone-producing hybrids morphologically resembled the mouse parent fibroblast. Hybrids grew in monolayers and contained 80-142 chromosomes, and marker chromosomes for both rat (small submetacentric) and mouse (bi-armed and large true metacentric) were identified. The interspecific nature of the hybrids was further confirmed by the presence of both rat and mouse adenosine deaminase and superoxide dismutase isozymes. Using specific antisera and indirect immunoperoxidase staining, both hybrid clones and GH3 rat parental cells stained positively for rat GH and PRL, while the murine fibroblast parental cells were negative. Hormone production by the hybrids has been sustained for over twenty subcultures; secretion rates were initially 150 ng PRL and 321 ng GH/10(6) cells/24 h and are currently 100 ng PRL and 90 ng GH/10(6) cells/24 h. Parental GH3 rat cells secreted 720 ng PRL and 660 ng GH/10(6) cells/24 h. Exposure of hybrids to KCl (50 mM) resulted in acute stimulation of rat PRL, but not rat GH release, and long-term incubation with thyrotropin-releasing hormone (TRH, 80 nM) stimulated PRL secretion. Hormone-dependent modulation of PRL secretion was transferred to the hybrid cell thus enabling the model to be used in studying regulation of PRL gene expression.  相似文献   

7.
The influence of dexamethasone treatment on the basal values of corticosterone, GH, prolactin (PRL), LH and FSH, as well as on the adenohypophyseal hormone response to chronic stress was studied in female rats. Dexamethasone acetate (25 micrograms/100 b.w.), given by gavage twice daily for 10 days, decreased the resting plasma levels of corticosterone, GH, LH and PRL, whereas the FSH titers remained normal. The secretion of ACTH (evaluated indirectly through corticosterone concentrations) and of GH appeared to be most sensitive to the suppressive effect of dexamethasone. The same hormonal response pattern was induced by 8 h of daily immobilization for 10 days, except that ACTH release was enhanced and the plasma LH titers dropped more drastically. Dexamethasone administration in combination with restraint did not alter the characteristic hormonal profile of chronic stress, despite the fact that ACTH secretion was completely blocked. These data suggest that the inhibition of PRL, LH and GH secretion following severe, chronic stress is not causally related to the sustained elevation of plasma ACTH.  相似文献   

8.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

9.
Numerous biochemical pathways influence the synthesis and release of anterior pituitary hormones. Releasing factors extracted from the hypothalamus and prostaglandins (PGs) appear to alter a common biochemical activity, adenyl cyclase, in pituitary cells. Luteinizing hormone releasing hormone (LRH), prostaglandin (PGE1), 7 oxa-13-prostynoic acid and cycloheximide were tested for individual and interacting effects on the in vitro release of FSH, LH and prolactin from hemipituitaries of 15 day old female rats. LRH (10 ng/ml) consistently released both LH and FSH in all in vitro experiments and inhibited prolactin release in 1 of 2 experiments. Lower concentrations (5 and 1 ng/ml) also stimulated LH and FSH release but did not influence prolactin release. Concurrent depletion of stored LH and FSH in the gland was observed. PGE1 in a 6.5 hour incubation increased the storage of LH within the gland in the absence of LRH. In a 1.5 hour incubation in the presence of LRH, storage of LH was also increased. PGE1 had no effect on LH and FSH release; however, in 1 of 2 experiments it stimulated prolactin release in the absence of LRH. Prostynoic acid stimulated LH and FSH release but did not synergize with LRH action in the same tissue. Cycloheximide did not affect LH release during the first 30 minutes of incubation; however, the release during the subsequent 1 hour was significantly inhibited. Similar tissue also exposed to cycloheximide was still responsive to LRH during the latter 1 hour incubation period. Cycloheximide had no effect on prolactin storage and release from the same tissue.  相似文献   

10.
The present study was undertaken to define hormonal conditions for in vitro maturation that support subsequent fertilization and embryonic development. Follicular oocytes were recovered from nonstimulated rabbit ovaries and cultured for 12 h in Brackett's medium supplemented with or without hormones. Matured oocytes were inseminated in vitro and transferred 12 h later to Ham's F-10 medium supplemented with 20% fetal calf serum. The initial cleavage frequency of matured oocytes in Brackett's medium was comparable to the frequency of development for in vitro-matured oocytes under various hormonal conditions. However, the addition of estradiol (E2, 1 microgram/ml) to incubation medium containing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) increased significantly (p less than 0.001) the percentage of embryos achieving morula or blastocyst formation (16/98, 16.3%), as compared to the mature oocytes in medium containing LH, LH plus FSH, or no hormone. The addition of prolactin (PRL) to the maturation medium increased the percentage of development to organized embryos in a dose-dependent manner. In vitro-matured oocytes in medium containing LH, FSH, and PRL exhibited a significantly (p less than 0.001) lower incidence of developmental competence (5/95, 5.3%) than oocytes matured in the presence of E2 in conjunction with pituitary hormones (43/89, 48.3%). These results demonstrate that hormonal composition in the environment of the oocyte is critical for acquisition of developmental capacity. PRL as well as E2 appears to be an important constituent in the process of oocyte maturation, promoting preimplantation embryonic development.  相似文献   

11.
Investigations were undertaken to study the effect of in vitro addition of testosterone (0.3 mM) on the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) by pituitary-hypothalamus complex (PHC) or the whole pituitary (PI) incubated for 72 hr, with incubation media changed every 24 hr. PHC or PI were from adult intact or castrated (7 days post castration) rats. The tissues incubated with or without testosterone were further exposed to 0.1 nM luteinizing hormone-releasing hormone (LHRH) for 4 hr. Incubation media and the pituitary were analyzed for PRL and gonadotrophin content. While PHC from normal and castrated rats released increasing amounts of LH with diminishing amounts of FSH and PRL at different periods of incubation, PI showed a decrease in the amounts of gonadotrophin and PRL released. Co-incubation of PHC or PI of intact or castrated rats with testosterone stimulated the release of LH and FSH during the first or second-24 hr incubation but inhibited the release of PRL in all the three incubations of 24 hr each. The extent of PRL inhibition increased with increasing incubation period. Testosterone had no effect on LHRH induced release of PRL but inhibited LHRH induced release of LH and FSH by pituitaries from constructs of normal rats. Testosterone reduced intrapituitary contents of PRL and FSH of intact and castrated rats. The data are interpreted to suggest that hypothalamus is essential for the maintenance of functional pituitary in vitro and that intrinsic differences exist in mechanisms regulating the secretion of LH, FSH and PRL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The luteinizing hormone (LH) and follicle stimulating hormone (FSH) releasing activity, as well as the prolactin (PRL) release-inhibiting activity were measured in both neutral aqueous, and acid ethanolic extracts of rat hypothalami. LH and FSH-releasing activities were detectable only in the latter type of extract, whereas PRL release-inhibiting activity appeared in both. Neutral ultrafiltrates of the neutral extracts contained no gonadotropin releasing activity, however, acidification of the filtration medium induced its appearance. PRL release was inhibited by both neutral and acid filtrates. These results suggest that LH and FSH releasing factor(s) may be stored in the hypothalamus in an inactive form from which the active peptide is generated in vitro under acid conditions; however, this does not appear to be true for the component(s) responsible for the inhibition of PRL release.  相似文献   

13.
Serum growth hormone (GH), prolactin (PRL), cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) levels were evaluated before and after a bicycle ergometer exercise test in 8 male competitive volleyball players and in 8 sedentary healthy males of the same age. Increased serum GH and cortisol values after exercise in both groups were found, whereas an exercise-induced PRL release was observed in athletes only. Serum levels of LH, FSH and TSH were unaffected by the test in all subjects. A possible role of training in conditioning the hypothalamopituitary exercise-induced secretion is suggested.  相似文献   

14.
The action of prolactin (PRL) on the secretion of gonadotropin was investigated by means of a cell culture system of rat anterior pituitary gland. Anterior pituitary glands were removed from Wistar male rats, enzymatically digested and cultured. Luteinizing hormone (LH) release into medium was increased by adding PRL dose-dependently in the range between 10 ng/ml and 1 microgram/ml. This effect of PRL was further augmented by the presence of either gonadotropin-releasing hormone or estradiol. The intracellular LH concentration was also increased by PRL. PRL also caused an increase in follicle-stimulating hormone release into medium dose-dependently. In conclusion, PRL was shown to stimulate the secretion of gonadotropin at the pituitary level, thus suggesting a paracrine mode of PRL action in the anterior pituitary gland.  相似文献   

15.
In view of striking similarities between TGF-beta and inhibin, we investigated the possibility that TGF-beta might modulate pituitary hormone release in vitro. Long term incubations of beta transforming growth factor (TGF-beta) with rat anterior pituitary cells for 48 hr stimulates the basal secretion of FSH in a dose-dependent manner. The secretion of LH, TSH, GH, ACTH and PRL is not modified by TGF-beta. The minimal effective concentration of TGF-beta is 10 pg/ml (less than 500 attomolar) and is dose dependent over a range from 1 pg to 10 ng/ml. Treatment of cells with TGF-beta for short incubation times (4 hr) in assays similar to that used for hypophysial releasing factors is not effective, indicating that TGF-beta acts through a cellular mechanism distinct from that of LRF. Inhibin-A, recently characterized on the basis of its capacity to specifically inhibit the secretion of FSH in the 48 hr bioassay system inhibits the stimulatory effect of TGF-beta on FSH-release. Analyses of the dose response curves indicate that the interaction occurs in a typical non-competitive manner. The results suggest that a TGF-beta-like molecule, present in follicular fluid, may be responsible for the FSH-releasing activity ("anti-inhibin" activity) observed by us and others during the process of isolating inhibin from follicular fluids. They also suggest an important role for inhibin and the TGF-beta related molecules in modulating pituitary gonadotropin release.  相似文献   

16.
Inhibitory effects of cysteamine on neuroendocrine function   总被引:1,自引:0,他引:1  
The action of cysteamine on anterior pituitary hormone secretion was studied in vivo using conscious, freely moving male rats and in vitro using anterior pituitary cells in monolayer culture. Administration of 500 micrograms cysteamine into the lateral cerebral ventricles of normal rats caused the complete inhibition of pulsatile GH secretion for a minimum of 6 h. This treatment also significantly decreased plasma concentrations of LH for at least 6 h in orchiectomized rat, TSH in short-term (0.5 month) thyroidectomized rats, and PRL in long-term (6 months) thyroidectomized rats. The in vivo stimulation of GH, LH, TSH and PRL with their respective releasing hormones 60 min after administration of cysteamine was not different from the response observed in rats pretreated with saline except for PRL where cysteamine pretreatment significantly inhibited the expected PRL increase. In vitro, 1 mM cysteamine decreased basal and TRH stimulated PRL release while not affecting basal or stimulated GH, LH, TSH and ACTH secretion. These data demonstrate the dramatic and wide-ranging effects of cysteamine on anterior pituitary hormone secretion. This action appears to be mediated through hypothalamic pathways for GH, LH and TSH and through a pituitary pathway for PRL.  相似文献   

17.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

18.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

19.
The hypophysiotropic activities of a synthetic human pancreatic growth hormone releasing factor (hpGRF) with 40 residues was examined in vitro using rat pituitary halves. At concentrations from 10(-10) M to 10(-7) M the peptide stimulated GH release in a dose-dependent manner with the ED50 being 1.2 x 10(-9) M. The concentration of 10(-10) M hpGRF is comparable to the basal hypophyseal portal blood levels of other known hypothalamic hypophysiotropic hormones. However, GH release was enhanced three-fold by concentration as low as 10(-12) M, though no dose-response relationship was observed up to 10(-10) M. Thus, this peptide not only stimulates the release of GH in a dose-dependent manner, but at lower concentrations also maintains elevated GH levels. The release of ACTH, beta-endorphin, LH, and FSH was not affected by hpGRF at any of the concentrations tested. At hpGRF concentrations less than 10(-7) M, the release of TSH and PRL were unaffected. However, at 10(-6) M, TSH release was enhanced about 2.5 fold and prolactin release was elevated slightly.  相似文献   

20.
When primary culture of rat pituitary cells were incubated with 1 nM activin-A for more than 24 hrs, activin-A significantly increased intracellular content of FSH without affecting the control of LH. Pretreatment of the cells with activin-A also enhanced LHRH-induced FSH release without affecting LH release. Furthermore, pretreatment of the cells with activin-A significantly reduced both GRF-mediated GH release and TRH-mediated PRL release. However, activin-A did not affect the response of ACTH and TSH to their releasing hormones. These results indicate that, in addition to the known action on gonadotrophs, activin-A also modifies the function of somatotrophs and lactotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号