首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies (Batra, P.P., Roebuck, M.A. and Uetrecht, D. (1990) J. Protein Chem. 9, 37-44) showed that succinylation or acetylation of 75% of the lysine residues has little effect on the secondary structure of ovalbumin. The acylation of the remaining 25% lysine residues, which apparently are partially buried, results in a substantial loss of the helical structure. These conformational changes may be due not only to electrostatic repulsions introduced by succinylation or acetylation of the positively charged epsilon-amino groups but also to steric hindrance, since an increase in the ionic strength failed to reverse the loss of the helical structure. An increase in pH to 12.2 results in a complete helix-to-coil transition in the maximally succinylated ovalbumin (but not in the partially succinylated or in any of the acetylated ovalbumins including the maximally acetylated derivative), perhaps because it is most expanded and its molecular interior most accessible to solvent as succinylation replaces +1 charge of epsilon-amino group with a -1 charge so that a net of -2 charge per succinyl group is placed on the protein molecule. This helix-to-coil transition in the maximally succinylated ovalbumin induced by high pH is fully reversed by increasing the ionic strength, indicating that only electrostatic effects are responsible for this disruption. Studies have also shown that although there is no loss of the helical structure until after the 75% surface lysine residues have been acylated, the helical structure does become progressively destabilized with increasing degree of modification, a conclusion drawn from urea unfolding curves. This destabilization of the helical structure is due primarily to electrostatic effects, as an increase in the ionic strength led to an increase in the urea transition mid-point. Unlike urea, the guanidine hydrochloride unfolding curves indicate that the transition mid-point for the native protein, as well as for the maximally succinylated and acetylated derivatives, is about the same, perhaps because the denaturant itself acts as an electrolyte.  相似文献   

2.
The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.  相似文献   

3.
M G Mulkerrin  R Wetzel 《Biochemistry》1989,28(16):6556-6561
Heated at pH 6.0 and at 50 degrees C, human interferon gamma (HuIFN-gamma) is inactivated via the formation of insoluble aggregates. At pH 6.0, the aggregation rate increases with temperature from 40 to 65 degrees C. There is a temperature-dependent time lag to aggregate formation observed in the generation of light-scattering particles at pH 6.0, and this correlates with the fast phase observed in the kinetics of reversible thermal unfolding. In addition, the dependence of aggregation kinetics on temperature closely follows the reversible melting curve. These observations suggest that at pH 6.0 irreversible thermal denaturation and aggregation depend on partial or complete unfolding of the molecule. At pH 5.0, also at 50 degrees C, the molecule is stable to irreversible aggregation. In reversible unfolding in 0.25 M guanidine hydrochloride, the Tm for HuIFN-gamma increases from 30.5 degrees C at pH 4.75 to 41.8 degrees C at pH 6.25, in analogy to the behavior of other globular proteins. These observations suggest that the relative instability of HuIFN-gamma to irreversible denaturation via aggregation at pH 6.0 compared to pH 5.0 is not due to an increased stability toward unfolding at the lower pH. Alternatively, stability at pH 5.0 must be due either to the improved solution properties of the unfolded state or to the improved solubility/decreased kinetic lifetime of an unfolding intermediate. Aggregation of HuIFN-gamma at 50 degrees C is half-maximal at pH 5.7, suggesting that protonation of one or both of the histidine residues may be involved in this stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Xu Y  Seeman D  Yan Y  Sun L  Post J  Dubin PL 《Biomacromolecules》2012,13(5):1642-1651
The effect of heparin on both native and denatured protein aggregation was investigated by turbidimetry and dynamic light scattering (DLS). Turbidimetric data show that heparin is capable of inhibiting and reversing the native aggregation of bovine serum albumin (BSA), β-lactoglobulin (BLG), and Zn-insulin at a pH near pI and at low ionic strength I; however, the results vary with regard to the range of pH, I, and protein-heparin stoichiometry required to achieve these effects. The kinetics of this process were studied to determine the mechanism by which interaction with heparin could result in inhibition or reversal of native protein aggregates. For each protein, the binding of heparin to distinctive intermediate aggregates formed at different times in the aggregation process dictates the outcome of complexation. This differential binding was explained by changes in the affinity of a given protein for heparin, partly due to the effects of protein charge anisotropy as visualized by electrostatic modeling. The heparin effect can be further extended to include inhibition of denaturing protein aggregation, as seen from the kinetics of BLG aggregation under conditions of thermally induced unfolding with and without heparin.  相似文献   

5.
This study compares the rate of denaturation with sodium dodecyl sulfate (SDS) of the individual rungs of protein charge ladders generated by acylation of the lysine epsilon-NH3+ groups of bovine carbonic anhydrase II (BCA). Each acylation decreases the number of positively charged groups, increases the net negative charge, and increases the hydrophobic surface area of BCA. This study reports the kinetics of denaturation in solutions containing SDS of the protein charge ladders generated with acetic and hexanoic anhydrides; plotting these rates of denaturation as a function of the number of modifications yields a U-shaped curve. The proteins with an intermediate number of modifications are the most stable to denaturation by SDS. There are four competing interactions-two resulting from the change in electrostatics and two resulting from the change in exposed hydrophobic surface area-that determine how a modification affects the stability of a rung of a charge ladder of BCA to denaturation with SDS. A model based on assumptions about how these interactions affect the folded and transition states has been developed and fits the experimental results. Modeling indicates that for each additional acylation, the magnitude of the change in the activation energy of denaturation (DeltaDeltaG(double dagger)) due to changes in the electrostatics is much larger than the change in DeltaDeltaG(double dagger) due to changes in the hydrophobicity, but the intermolecular and intramolecular electrostatic effects are opposite in sign. At the high numbers of acylations, hydrophobic interactions cause the hexanoyl-modified BCA to denature nearly three orders of magnitude more rapidly than the acetyl-modified BCA.  相似文献   

6.
The effects of dimethyl sulfoxide (DMSO) on creatine kinase (CK) conformation and enzymatic activity were studied by measuring activity changes, aggregation, and fluorescence spectra. The results showed that at low concentrations (< 65% v/v), DMSO had little effect on CK activity and structure. However, higher concentrations of DMSO led to CK inactivation, partial unfolding, and exposure of hydrophobic surfaces and thiol groups. DMSO caused aggregation during CK denaturation. A 75% DMSO concentration induced the most significant aggregation of CK. The CK inactivation and unfolding kinetics were single phase. The unfolding of CK was an irreversible process in the DMSO solutions. The results suggest that to a certain extent, an enzyme can maintain catalytic activity and conformation in water-organic mixture environments. Higher concentrations of DMSO affected the enzyme structure but not its active site. Inactivation occurred along with noticeable conformational change during CK denaturation. The inactivation and unfolding of CK in DMSO solutions differed from other denaturants such as guanidine, urea, and sodium dodecyl sulfate. The exposure of hydrophobic surfaces was a primary reason for the protein aggregation.  相似文献   

7.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

8.
Folding and unfolding are fundamental biological processes in cell and are important for the biological functions of proteins. Characterizing the folding and unfolding kinetics of proteins is important for understanding the energetic landscape leading to the active native conformations of these molecules. However, the thermal or chemical-induced unfolding of many proteins is irreversible in vitro, precluding characterization of the folding kinetics of such proteins, just as it is impossible to “un-boil” an egg. Irreversible unfolding often manifests as irreversible aggregation of unfolded polypeptide chains, which typically occurs between denatured protein molecules in response to the exposure of hydrophobic residues to solvent. An example of such a protein where thermal denaturation results in irreversible aggregation is the β-1,4 endoxylanase from Bacillus circulans (BCX). Here, we report the use of single-molecule atomic force microscopy to directly measure the folding kinetics of BCX in vitro. By mechanically unfolding BCX, we essentially allowed only one unfolded molecule to exist in solution at a given time, effectively eliminating the possibility for aggregation. We found that BCX can readily refold back to the native state, allowing us to measure its folding kinetics for the first time. Our results demonstrate that single-molecule force-spectroscopy-based methods can adequately tackle the challenge of “un-boiling eggs”, providing a general methodology to characterize the folding kinetics of many proteins that suffer from irreversible denaturation and thus cannot be characterized using traditional equilibrium methodologies.  相似文献   

9.
The kinetics of the irreversible unfolding of glutathione reductase (NAD[P]H:GSSG oxidoreductase, EC 1.6.4.2.) from cyanobacterium Spirulina maxima was studied at pH 7.0 and room temperature. Denaturation was induced by guanidinium chloride and the changes in enzyme activity, aggregation state, and tertiary structure were monitored. No full reactivation of enzyme was obtained, even after very short incubation times in the presence of denaturant. Reactivation plots were complex, showing biphasic kinetics. A very fast early event in the denaturation pathway was the dissociation of tetrameric protein into reactivatable native-like dimers, followed by its conversion into a nonreactivatable intermediary, also dimeric. In the final step of the unfolding pathway the latter was dissociated into denatured monomers. Fluorescence measurements revealed that denaturation of S. maxima glutathione reductase is a slow process. Release of the prostethic group FAD was previous to the unfolding of the enzyme. No aggregated species were detected in the unfolding pathway, dismissing the aggregation of denatured polypeptide chains as the origin of irreversibility. Instead, the transition between the two dimeric intermediates is proposed as the cause of irreversibility in the denaturation of S. maxima glutathione reductase. A value of 106.6 +/- 3 kJ mol(-1) was obtained for the activation free energy of unfolding in the absence of denaturant. No evidence for the native monomer in the unfolding pathway was obtained which suggests that the dimeric nature of glutathione reductase is essential for the maintenance of the native subunit conformation.  相似文献   

10.
When transglutaminase is heated at temperatures above 40 degrees C, it loses its activity according to a two-step mechanism [Nury, Meunier & Mouranche (1989) Eur. J. Biochem. 180, 161-166]: N----X(TD)----D However, the nature of the molecular events responsible for the irreversible denaturation is still unknown. Investigation of the effects of dithiothreitol and 5,5'-dithiobis-2-nitrobenzoate on the kinetics of inactivation, titrations of ammonia released by deamidation and of thiol groups on the native and denatured enzymes and SDS/PAGE rule out the involvement of covalent processes during the denaturation of transglutaminase at 55 degrees C and pH 7. Of the two possible kinds of non-covalent events, i.e. unfolding of the polypeptide chain and aggregation of enzyme molecules, we show that both occur, though only the former process is responsible for the denaturation. The latter process, aggregation, follows the unfolding of the molecules.  相似文献   

11.
The unfolding and refolding of creatine kinase (ATP:creatine N-phosphotransferase (CK), EC 2.7.3.2) during denaturation and reactivation by trifluoroethanol (TFE) have been studied. Significant aggregation was observed when CK was denatured at TFE concentrations between 10% and 40% (v/v). 50% TFE (v/v) was used to study the denaturation and unfolding of CK. The activity loss of CK was a very quick process, as was the marked conformational changes during denaturation followed by fluorescence emission spectra and far-ultraviolet CD spectra. DTNB modification and size exclusion chromatography were used to find that CK dissociated and was in its monomer state after denaturation with 50% TFE. Reactivation and refolding were observed after 80-fold dilution of the denatured CK into 0.05 M Tris-HCl buffer, pH 8.0. The denatured CK recovered about 38% activity following a two phase course (k(1)=4.82+/-0.41x10(-3) s(-1), k(2)=0.60+/-0.01x10(-3) s(-1)). Intrinsic fluorescence maximum intensity changes showed that the refolding process also followed biphasic kinetics (k(1)=4.34+/-0.27x10(-3) s(-1), k(2)=0.76+/-0.02x10(-3) s(-1)) after dilution into the proper solutions. The far-ultraviolet CD spectra ellipticity changes at 222 nm during the refolding process also showed a two phase course (k(1)=4.50+/-0.07x10(-3) s(-1), k(2)=1.13+/-0.05x10(-3) s(-1)). Our results suggest that TFE can be used as a reversible denaturant like urea and GuHCl. The 50% TFE induced CK denaturation state, which was referred to as the 'TFE state', and the partially refolded CK are compared with the molten globule state. The aggregation caused by TFE during denaturation is also discussed in this paper.  相似文献   

12.
Divalent calcium ions have been suggested to be involved in intermolecular protein-Ca2+-protein cross-linking, intramolecular electrostatic shielding, or ion-induced protein conformational changes as a trigger for protein aggregation at elevated temperatures. To address the first two phenomena in the case of beta-lactoglobulin, a combination of chemical protein modification, calcium-binding, and aggregation studies was used, while the structural integrity of the modified proteins was maintained. Although increasing the number of carboxylates on the protein by succinylation results in improved calcium-binding, calcium appears to be less effective in inducing protein aggregation. In fact, the larger the number of carboxylates, the higher the concentration of calcium that is required to trigger the aggregation. Lowering the number of negative charges on the protein surface via methylation of carboxylates reduces calcium-binding properties, but calcium-induced aggregation at low concentration is improved. Monovalent sodium ions cannot take over the specific role of calcium. The relation between net surface charge and number of calcium ions bound required to trigger the aggregation suggests that calcium needs to bind site specific to carboxylates with a threshold affinity. Subsequent site-specific screening of surface charges results in protein aggregation, driven by the partial unfolding of the protein at elevated temperatures, which is then facilitated by the absence of electrostatic repulsion.  相似文献   

13.
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.  相似文献   

14.
B Chen  J King 《Biochemistry》1991,30(25):6260-6269
The conditions in which protein stability is biologically or industrially relevant frequently differ from those in which reversible denaturation is studied. The trimeric tailspike endorhamnosidase of phage P22 is a viral structural protein which exhibits high stability to heat, proteases, and detergents under a range of environmental conditions. Its intracellular folding pathway includes monomeric and trimeric folding intermediates and has been the subject of detailed genetic analysis. To understand the basis of tailspike thermostability, we have examined the kinetics of thermal and detergent unfolding. During thermal unfolding of the tailspike, a metastable unfolding intermediate accumulates which can be trapped in the cold or in the presence of SDS. This species is still trimeric, but has lost the ability to bind to virus capsids and, unlike the native trimer, is partially susceptible to protease digestion. Its N-terminal regions, containing about 110 residues, are unfolded whereas the central regions and the C-termini of the polypeptide chains are still in the folded state. Thus, the initiation step in thermal denaturation is the unfolding of the N-termini, but melting of the intermediate represents a second kinetic barrier in the denaturation process. This two-step unfolding is unusually slow at elevated temperature; for instance, in 2% SDS at 65 degrees C, the unfolding rate constant is 1.1 x 10(-3) s-1 for the transition from the native to the unfolding intermediate and 4.0 x 10(-5) s-1 for the transition from the intermediate to the unfolded chains. The sequential unfolding pathway explains the insensitivity of the apparent Tm to the presence of temperature-sensitive folding mutations [Sturtevant, J. M., Yu, M.-H., Haase-Pettingell, C., & King, J. (1989) J. Biol. Chem. 264, 10693-10698] which are located in the central region of the chain. The metastable unfolding intermediate has not been detected in the forward folding pathway occurring at lower temperatures. The early stage of the high-temperature thermal unfolding pathway is not the reverse of the late stage of the low-temperature folding pathway.  相似文献   

15.
The aim of this work was to study the effect of the formation of more heat-stable conformers of chicken egg ovalbumin during incubation at basic pH (9.9) and elevated temperature (55 degrees C) on the protein aggregation properties at neutral pH. Native ovalbumin (N-OVA) is converted on the hours time-scale into more heat-stable forms denoted I- (intermediate) and S-OVA, that have denaturation temperatures 4.8 and 8.4 degrees C, respectively, higher than that of N-OVA. The conversions most likely proceed via I-OVA, but direct conversion of N-OVA into S-OVA with slower kinetics can not be excluded. It is demonstrated that both I- and S-OVA have similar denaturation characteristics to N-OVA, except that higher temperatures are required for denaturation. The presence of even small contributions of I-OVA does, however, reduce the Stokes radius of the aggregates formed upon heat treatment of the material at 90 degrees C about 2-fold. This affects the gel network formation considerably. Since many (commercial) preparations of ovalbumin contain varying contributions of the more heat-stable forms mentioned, proper characterization or standardization of the isolation procedure of the material is essential to control or predict the industrial application of this protein.  相似文献   

16.
We recently isolated a mutant of a human anti-beta-galactosidase single chain antibody fragment (scFv) able to fold at high levels in Escherichia coli cytoplasm. When targeted to the periplasm, this mutant and the wild-type scFv are both expressed at comparable levels in a soluble, active and oxidized form. If a reducing agent is added to the growth medium, only the mutant scFv is still able to fold, showing that in vivo aggregation is a direct consequence of the lack of disulphide bond formation and not of the cellular localization. In vitro denaturation/renaturation experiments show that the mutant protein is more stable than the wild-type scFv. Furthermore, refolding kinetics under reducing conditions show that the mutant folds faster than the wild-type protein. Aggregation does not proceed from the native or unfolded conformation of the protein, but from a species only present during the unfolding/refolding transition. In conclusion, the in vivo properties of the mutant scFv can be explained by, first, an increase in the stability of the protein in order to tolerate the removal of the two disulphide bonds and, second, a modification of its folding properties that reduces the kinetic competition between folding and aggregation of a reduced folding intermediate.  相似文献   

17.
Thermal transition of core particle which occurs before melting of DNA and can be followed by circular dichroism is not a two-state process; it is the result of two processes which cannot be dissociated in static experiments: unfolding of core particles is immediately followed by their aggregation. It is thus impossible to get thermodynamic parameters of core particle unfolding from its thermal transition monitored by circular dichroism. Thermal denaturation kinetics of core particles gives some information about their stability. Finally core particle structure is more stable in chromatin than in its isolated state.  相似文献   

18.
F M Hughson  R L Baldwin 《Biochemistry》1989,28(10):4415-4422
Site-directed mutagenesis has been used to study the effect on the stability of human apomyoglobin (apoMb) of modifying the size, hydrophobicity, and charge of a central residue in the G.B helix-helix packing interface. Some stability measurements have also been made on the corresponding holomyoglobins (heme present). Cys-110, a central helix pairing residue in the G helix, has been changed to Ala, Ser, Asp, and Leu. Stability to low-pH-induced unfolding has been measured for both native apoMb and the compact folding intermediate discovered by Griko et al. [Griko, Y. V., Privalov, P. L., Venyaminov, S. Y., & Kutyshenko, V. P. (1988) J. Mol. Biol. 202, 127-138]. As judged by its circular dichroism spectrum, this intermediate has a substantial helix content (about 35%). Whether or not this inferred helical structure is closely related to the myoglobin structure is not yet known. The mutational evidence shows that integrity of G.B helix pairing is important for the stability of apoMb as well as of myoglobin and that this helix pairing site is very sensitive to both steric and electrostatic disruption. Our results also suggest that G.B helix pairing does not stabilize the compact intermediate; hence, disrupting this site destabilizes the native protein relative to the compact intermediate. Such selective destabilization of the native state relative to equilibrium folding intermediates is not restricted to acid denaturation: urea denaturation of the Leu mutant appears to display at least one stable intermediate, while wild-type and the remaining mutant apoMbs undergo two-state urea unfolding transitions.  相似文献   

19.
Nishimura C  Uversky VN  Fink AL 《Biochemistry》2001,40(7):2113-2128
The stability and folding kinetics of wild-type and a mutant staphylococcal nuclease (SNase) at neutral pH are significantly perturbed by the presence of moderate to high concentrations of salts. Very substantial increases in stability toward thermal and urea denaturation were observed; for example, 0.4 M sodium sulfate increased the free energy of wild-type SNase by more than 2 kcal/mol. For the NCA SNase mutant, the presence of the salts abolished the cold denaturation observed at neutral pH with this variant, and substantially increased its stability. Significant effects of salts on the kinetics of refolding were also observed. For NCA SNase, the presence of the salts markedly increased the folding rates (up to 5-fold). On the other hand, chloride, in particular, substantially decreased the rate of folding of the wild-type protein. Since the rates of the slow phases due to proline isomerization were increased by salt, these steps must be coupled to conformational processes. Fluorescence energy transfer between the lone tryptophan (Trp140) and an engineered fluorescent acceptor at residue 64 revealed that the addition of a high concentration of KCl led to the formation of a transient folding intermediate not observed at lower salt concentrations, and in which residues 140 and 64 were much closer than in the native state. The salt-induced effects on the kinetics of folding are attributed to the enhanced stability of the transient folding intermediates. It is likely that the combination of the high net charge, due to the high isoelectric point, and the relatively low intrinsic hydrophobicity, leads to staphylococcal nuclease having only marginal stability at neutral pH. The salt-induced effects on the structure, stability, and kinetics of staphylococcal nuclease are attributed to the binding of counterions, namely, anions, resulting in minimization of intramolecular electrostatic repulsion. This leads to increased stability, more structure, and greater compactness, as observed. Consequently, localized electrostatic repulsion is present at neutral pH in SNase, probably contributing to its marginal stability. The results suggest that, in general, marginally stable globular proteins will be significantly stabilized by salts under conditions where they have a substantial net charge.  相似文献   

20.
A monomeric form of acetylcholinesterase from the venom of Bungarus fasciatus is converted to a partially unfolded molten globule species by thermal inactivation, and subsequently aggregates rapidly. To separate the kinetics of unfolding from those of aggregation, single molecules of the monomeric enzyme were encapsulated in reverse micelles of Brij 30 in 2,2,4-trimethylpentane, or in large unilamellar vesicles of egg lecithin/cholesterol at various protein/micelle (vesicle) ratios. The first-order rate constant for thermal inactivation at 45 degrees C, of single molecules entrapped within the reverse micelles (0.031 min(-1)), was higher than in aqueous solution (0.007 min(-1)) or in the presence of normal micelles (0.020 min(-1)). This clearly shows that aggregation does not provide the driving force for thermal inactivation of BfAChE. Within the large unilamellar vesicles, at average protein/vesicle ratios of 1:1 and 10:1, the first-order rate constants for thermal inactivation of the encapsulated monomeric acetylcholinesterase, at 53 degrees C, were 0.317 and 0.342 min(-1), respectively. A crosslinking technique, utilizing the photosensitive probe, hypericin, showed that thermal denaturation produces a distribution of species ranging from dimers through to large aggregates. Consequently, at a protein/vesicle ratio of 10:1, aggregation can occur upon thermal denaturation. Thus, these experiments also demonstrate that aggregation does not drive the thermal unfolding of Bungarus fasciatus acetylcholinesterase. Our experimental approach also permitted monitoring of recovery of enzymic activity after thermal denaturation in the absence of a competing aggregation process. Whereas no detectable recovery of enzymic activity could be observed in aqueous solution, up to 23% activity could be obtained for enzyme sequestered in the reverse micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号