首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Global patterns of species range and richness are a consequence of many interacting factors, including environmental conditions, competition, geographical area, and historical/evolutionary development. Two widely studied global patterns of distribution are the latitudinal and elevation gradients of species range and richness. The fundamental mechanisms by which environment and physiology of the plants themselves interact to generate global-scale correlations between increased species range or decreased species richness and latitude/elevation have not previously been established. This paper develops the hypothesis that the primary climatic variables determining global-scale gradients in ectotherm species range and richness are temperature (T) and temperature variability (T), and that the primary physiological variable defining adaptation of ectotherms to temperature is respiratory energy metabolism. This hypothesis is based on a postulate that adaptation of ectotherms to latitudinal/altitudinal gradients of T and T leads to corresponding gradients in properties of energy metabolism. The gradients of metabolic properties give rise to gradients of species range and richness that are observed on a global scale. We demonstrate that natural selection results in ectotherms with metabolic properties matched to their environment and that energy use efficiency and the temperature range allowing growth are inversely related. Thus, opposing selective pressures to increase metabolic energy-use-efficiency or to increase the probability of surviving climate extremes control adaptation of ectotherms to climate. The principles developed in this paper yield fundamental laws of ecology that allow calculation of the contributions of global temperature patterns to the formation of gradients of species range and diversity. Relative values of richness and range are calculated solely from data on abiotic variables. Predictions agree with known patterns of ectotherm distribution.  相似文献   

2.
地形对七姊妹山自然保护区植物丰富度及分布格局的影响   总被引:1,自引:0,他引:1  
该研究以七姊妹山自然保护区40个(20×20m2)植物群落调查样方为基础,并采用回归分析和典型对应分析(CCA)的方法研究该区地形对植物物种丰富度及植物分布格局的影响,以明确海拔、坡度、坡向、坡位等地形因子的相对重要性,为该区植物多样性的保护和管理提供理论依据。结果表明:(1)七姊妹山自然保护区40个调查样地共有植物633种,隶属133科,316属,其中乔木118种,灌木150种,草本365种。(2)曲线回归方程拟合结果显示,七姊妹山自然保护区植物物种丰富度分别与海拔、坡度具有显著相关性,物种丰富度沿海拔梯度升高而增大,沿坡度梯度先减少后增大之后又减小。(3)从植物的生活型来看,在所有海拔段,乔木物种丰富度始终低于灌木和草本植物;在低、中低海拔地带,灌木物种丰富度均高于乔木和草本植物;而在中、高海拔地带草本植物物种丰富度较大且高于乔木和灌木。(4)CCA排序结果表明,地形因子对植物物种的分布具有显著影响按其影响强度排序为海拔坡度坡位坡向,说明海拔是影响该区植物物种分布最重要的地形因子。  相似文献   

3.
用巴拿马50 hm2森林动态监测样地内直径≥1 cm的树种资料,分析了该样地树种多度(个体数)和丰富度(物种数)及其方差和变异系数在6个取样尺度(5 m×5 m,10 m×10 m,20 m×20 m,25 m×25 m,50 m×50 m,100 m×100 m)的变化规律.结果显示:(1)由于多度的可加性,不同取样尺度在样地内树种多度的变化表现出一致性;随取样尺度的增加,多度方差呈线性增加,而变异系数呈线性减小.(2)丰富度随取样尺度的变化较为复杂,随取样尺度的增加,丰富度方差呈非线性变化,在取样尺度为25 m×25 m时方差最大;变异系数随取样尺度的增加而呈线性减小.研究表明,大尺度的多度值可以由小尺度的多度值通过外推法估计,而丰富度却不能,在生物多样性的保护和管理中不能简单地从一个取样尺度的生物丰富度推测另一个取样尺度丰富度.  相似文献   

4.
Chao A  Lin CW 《Biometrics》2012,68(3):912-921
Summary A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals' detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g., quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of some previous estimators.  相似文献   

5.
Butterfly and plant species richness were recorded from 1997 to 2000 on 2 and 6 m grass margins created at three farms in Essex which had entered the Countryside Stewardship Scheme (CSS) in October 1996. On both the 2 and 6 m margins there was a significant relationship between the length of hedgerow and the number of plant species observed on the margins, but the seed mixtures used may not have been ideal and natural regeneration should not have been used on the clay soils of Essex. Butterfly species richness was significantly greater on the 2 m margins than on the control sections, and was greater when a higher number of grass species were included in the original seed mixture. Plant species richness was greater on the 6 m margins when established by natural regeneration. CSS grass margins could be improved as butterfly habitats if they are linked to existing habitats such as hedgerows, are sown with a better range of native grasses and herbs and are managed in a way more conducive to wildlife. These changes to the policy of establishment of CSS margins could help combat habitat loss and fragmentation within the countryside.  相似文献   

6.
The ecological role of biodiversity in achieving successful restoration has been little explored in restoration ecology. We tested the prediction that we are more likely to create persistent, species‐rich plant communities by increasing the number of species sown, and, to some degree, by varying functional group representation, in experimental prairie plantings. There were 12 treatments consisting of 1‐, 2‐, 3‐, 4‐, 8‐, 12‐, and 16‐species mixtures of native perennials representing four functional groups (C4 grasses, C3 grasses, nitrogen‐fixing species, and late‐flowering composites) that predominate within Central Plains tallgrass prairies. In 2000, species were seeded into square plots (6 × 6 m), with five replicates per treatment, on former agricultural land. Annually, we measured total species richness and evenness, target species richness and cover, and richness and cover of resident species (i.e., those emerging from the seed bank). Both target species richness and rate of establishment of target communities were highest in the most species‐rich mixtures, but there was no additional benefit for treatments that contained more than eight species. Richness of resident species did not vary with target species richness; however, cover by resident species was lower in the higher target species treatments. Our results, indicating that establishment of species‐rich prairie mimics can be enhanced by starting with larger numbers of species at the outset, have implications for grassland restoration in which community biodiversity creation and maintenance are key goals.  相似文献   

7.
The realized species richness of tropical forests cannot yet be reliably mapped at a regional scale due to lack of systematically collected data. An estimate of the potential species richness (PSR), however, can be produced through the use of species distribution modelling. PSR is interpretable as a climatically determined upper limit to observed species richness. We mapped current PSR and future PSR under climate change scenarios for Mesoamerica by combining the spatial distributions of 2000 tree species as predicted by generalized additive models built from herbaria records and climate layers. An explanatory regression tree was used to extract conditional rules describing the relationship between PSR and climate. The results were summarized by country, ecoregion and protected area status in order to investigate current and possible future variability in PSR in the context of regional biodiversity conservation. Length of the dry season was found to be the key determinant of PSR. Protected areas were found to have higher median PSR values than unprotected areas in most of the countries within the study area. Areas with exceptionally high PSR, however, remain unprotected throughout the region. Neither changes in realized species richness nor extinctions will necessarily follow changes in modelled PSR under climate change. However model output suggests that an increase in temperature of around 3°C, combined with a 20 percent decrease in rainfall could lead to a widespread reduction of around 15 percent of current PSR, with values of up to 40 percent in some moist lower montane tropical forests. The modelled PSR of dry forest ecoregions was found to be relatively stable. Some cooler upper montane forests in northern Mesoamerica, where few species of tropical origin are currently found, may gain PSR if species are free to migrate.  相似文献   

8.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

9.
茂兰喀斯特峰丛地貌森林是目前罕见的一类原生性强、人为干扰少的非地带性森林生态系统,与常态地貌地带性森林生态系统相比差异大。该研究采用典型样地调查方法对茂兰喀斯特森林海拔在620~910 m之间的垂直样带11个样方进行调查,分析研究区顶级群落物种丰富度的垂直梯度变化特征,并用冗余分析(RDA)法分析环境因子对物种丰富度的影响,以明确垂直梯度上物种丰富度与环境因子的关系,为喀斯特自然森林生态系统的维持与恢复、保护与管理提供理论基础。结果表明:(1)该调查茂兰喀斯特峰丛共记录有维管植物511种,隶属于124科272属。(2)单因素方差分析表明,该群落不同生活型的丰富度之间存在极显著差异(P<0.01);LSD多重比较分析表明,群落丰富度水平表现为总体>灌木层>草本层>乔木层。(3)随海拔梯度的升高,群落总物种丰富度和草本层物种丰富度与海拔呈显著负相关关系(P<0.05),乔木层丰富度和灌木层丰富度与海拔无明显规律。(4)冗余分析表明,土壤C/N/P的解释率达到58%,是影响物种丰富度的主要因素。  相似文献   

10.
Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early‐successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6‐, 1‐, and 4‐m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4‐m unseeded strips. The practice of leaving 4‐m‐wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species‐rich plant community that could be utilized for forestry or a variety of other postmining land uses.  相似文献   

11.
The causes of linear relationships between local species richness and the size of the actual species pool in closed subalpine meadow communities and open plant communities of the alpine stony substrate (the Greater Caucasus Mountains) were analyzed using a computer simulation model. The results demonstrated that this relationship is insufficient evidence for the variation of local species richness among communities is wholly or partly determined by regional processes (the species-pool hypothesis). A relatively proportional ratio between these variables can also arise where local species richness and the size of the species pool both depend on local processes, or where local species richness is determined by local factors alone while the size of the species pool is determined by both local and regional factors.  相似文献   

12.
该研究以中条山油松人工林群落为研究对象,研究林下不同大小的子群落对群落物种丰富度分布格局的贡献,并确定影响该区域群落物种丰富度分布格局的关键种,为区域物种多样性保护提供理论依据.结果 表明:(1)该地区林下物种频度分布格局呈明显右偏,且不同样方物种丰富度存在明显差异.(2)常见种对群落丰富度分布格局的贡献大于稀有种.(...  相似文献   

13.
ABSTRACT Beaver (Castor canadensis) activity creates wetland habitats with varying hydroperiods important in maintaining habitat diversity for pond-breeding amphibians with significantly different breeding habitat requirements. We documented pond-breeding amphibian assemblages in 71 freshwater wetlands in Acadia National Park, Maine, USA. Using 15 variables describing local pond conditions and wetland landscape characteristics, we developed a priori models to predict sites with high amphibian species richness and used model selection with Akaike's Information Criterion to judge the strength of evidence supporting each model. We developed single-species models to predict wood frog (Rana sylvatica), bullfrog (R. catesbeiana), and pickerel frog (R. palustris) breeding site selection. Sites with high species richness were best predicted by 1) connectivity of wetlands in the landscape through stream corridors and 2) wetland modification by beaver. Wood frog breeding habitat was best predicted by temporary hydroperiod, lack of fish, and absence of current beaver activity. Wood frog breeding was present in abandoned beaver wetlands nearly as often as in nonbeaver wetlands. Bullfrog breeding was limited to active beaver wetlands with fish and permanent water. Pickerel frog breeding sites were best predicted by connectivity through stream corridors within the landscape. As beavers have recolonized areas of their former range in North America, they have increased the number and diversity of available breeding sites in the landscape for pond-breeding amphibians. The resulting mosaic of active and abandoned beaver wetlands both supports rich amphibian assemblages and provides suitable breeding habitat for species with differing habitat requirements. Land managers should consider the potential benefits of minimal management of beavers in promoting and conserving amphibian and wetland diversity at a landscape scale.  相似文献   

14.
利用对铜壁关自然保护区多次考察形成的种子植物数据库,结合通过GIS生成的区域数字高程模型(DEM)数据,分析了该区域种子植物物种丰富度及物种密度沿海拔梯度的变化特征。结果表明, 科、属、种的丰富度随海拔的升高,先增加后降低,在中海拔区域达到最大值,科、种的丰富度最大值出现在海拔1400~1800 m的范围内,属的丰富度最大值出现在1000~1400 m的海拔范围。科、属、种的密度随海拔升高先下降后上升,再下降后再上升;且最大值都出现在保护区最高海拔3000~3400 m的范围内。物种丰富度和物种密度分布格局明显受到海拔梯度的影响,海拔梯度综合了水热条件等诸多因素。铜壁关种子植物科、属、种水平上的物种丰富度的海拔分布格局符合中域效应假说;同时还对目前常用的计算物种密度的"对数模型"方法的普遍适用性提出质疑。  相似文献   

15.
The aim of this study was to investigate the influence of 5 typological variables on the spatial distribution patterns of fish species richness in south‐western France, and, subsequently, to analyse differences in the number of species occurring in 6 major hydroregions located within the overall study area. The data were collected at 329 sampling sites. General Linear Modelling was used to assess the influence of each typological variable on local fish species richness, and to determine the differences in local fish species richness between the 6 hydroregions. Local species richness was significantly influenced by altitude, slope and catchment area, whereas distance from the source and stream width showed no significant relations with local richness. The Côteaux de Gascogne hydroregion had a significantly lower species richness, whereas no significant differences occurred among other neighbouring hydroregions. These results were congruent with the spatial distribution patterns of freshwater invertebrate species richness in the area, which were analysed in previous studies. At such a regional scale, we suggest that congruent patterns between fish and invertebrate species richness are almost certainly a result of similar responses by different taxa to environmental conditions, rather than to biotic interactions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future distributions, of 80 common tree species for each scenario. The model assumes that the vegetation and climate are in equilibrium with no barriers to species migration. Combinations of the individual species model outcomes allowed estimates of species richness (from among the 80 species) and forest type (from simple rules) for each of 2100 counties in the eastern United States. Average species richness across all counties may increase slightly with climatic change. This increase tends to be larger as the average temperature of the climate change scenario increases. Dramatic changes in the distribution of potential forest types were modeled. All five scenarios project the extirpation of the spruce–fir forest types from New England. Outputs from only the two least severe scenarios retain aspen–birch, and they are largely reduced. Maple–beech–birch also shows a large reduction in area under all scenarios. By contrast, oak–hickory and oak–pine types were modeled to increase by 34% and 290%, respectively, averaged over the five scenarios. Although many assumptions are made, these modeled outcomes substantially agree with a limited number of predictions from researchers using paleoecological data or other models. Received 12 May 2000; accepted 20 October 2000.  相似文献   

17.
Despite the importance of the soil seed bank in tropical forest regeneration, little is known about spatial variability in species composition and abundance of seeds stored in the soil. To develop sampling methods for comparative studies, we examined species richness, spatial variation, and abundance of germinants from the soil seed bank in a 16 year old secondary, tropical wet forest at La Selva Biological Station, Costa Rica. Surface soil (10 cm deep, 4.7 cm diameter) was collected at the intersection points of a gridded 1 ha plot (10 × 10-m grid, 121 samples) and in a nested 100 m2 subplot (2 × 2-m grid, 36 samples). The 1 ha plot had a density of 4535 seeds/m2 with 34 species observed. Based on a series of 100 randomized species accumulation curves, a Michaelis-Menten fit predicted a mean species richness of 36.3 species; the number of observed species was close to the predicted asymptote. A nonparametric, first-order jackknife species richness estimator predicted a species richness of 37.0 species. Eighty-five and 95 percent of the observed species richness is contained, on average, within 41 and 74 pooled samples, respectively. Within the 100 m2 nested subplot, a density of 5476 seeds/m2 was observed, comprising 26 species with an estimated species richness (Michaelis-Menten fit) of 29.1 species. The jackknife species richness estimator predicted a species richness of 36.7 species. For species richness and abundance of both plots, spatial autocorrelation statistics (Moran's I) were not significantly different from zero at lag distances from 2 to 100 m, indicating a random distribution at these spatial scales. For this site, accurate estimates of species composition depend upon the number of samples collected as well as the spatial distribution of sampling effort. Many small samples distributed over a large area provide greater accuracy and precision for estimating species richness of the soil seed bank.  相似文献   

18.
香溪河流域河岸带植物群落物种丰富度格局   总被引:37,自引:9,他引:37  
通过不同海拔高度的样带调查来研究香溪河流域河岸植物群落物种丰富度格局,并探讨河岸带中生物多样性维持的生态学机制。结果表明:河岸植物群落总的物种丰富度、乔木层物种丰富度和草本层物种丰富度沿海拔梯度均表现出相似的格局特征,利用抛物线方程进行拟合,物种丰富度与海拔之间有显著的相关性。灌木层物种丰富度和藤本植物物种丰富度格局特征不明显,且物种丰富度与坡度相关,在流域尺度上,海拔对物种丰富度有着重要的控制作用;在局部尺度上,季节性洪水干扰导致的空间异质性和小地形对群落的生物多样性有着重要的影响,研究结果支在于总的物种多样性在原始河流的中间河段将达到最大值的预测。  相似文献   

19.
General circulation models (GCM) predict that increasing levels of atmospheric carbon dioxide (CO2) and other greenhouse gases will lead to dramatic changes in climate. It is known that the spatial variability of species richness over continental spatial scales is strongly correlated with contemporary climate. Assuming that this relationship between species richness and climate persists under conditions of increased CO2, what changes could we expect to occur in terms of species richness? To address this question, I used observed relationships between contemporary richness and climate, coupled with climate projections from five GCM, to project these future changes. These models predict that the richness of vertebrate ectotherms will increase over most of the conterminous United States. Mammal and bird richness are predicted to decrease in much of the southern US and to increase in cool, mountainous areas. Woody plant richness is likely to increase throughout the North and West and to decrease in the southwestern deserts. These projections represent changes that are likely to occur over long time scales (millennia); short-term changes are expected to be mainly negative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号