首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead, antimony, copper, and zinc are expected contaminants in firing-range soil due to their presence in bullets, shells, etc. These elements are also naturally occurring, so it is important to distinguish between naturally high background concentrations and actual contamination during site investigations. A data visualization technique based on geochemical principles has been successfully applied during range investigations to identify contaminated samples and confirm the success of remediation efforts. For example, at some locations, lead has a natural affinity to adsorb on manganese oxides, yielding positive correlations between lead and manganese concentrations and consistent Pb/Mn ratios in uncontaminated samples. Contaminated samples are identified by anomalously high Pb/Mn ratios. Plots of copper or zinc versus lead provide supporting evidence for a contaminant source; Cu/Pb or Zn/Pb ratios in oxic soils are distinctly different in uncontaminated samples versus samples co-contaminated with these metals. Two case studies are presented from facilities in the United States.  相似文献   

2.
We used geochemical analyses of groundwater and laboratory-incubated microcosms to investigate the physiological responses of naturally occurring microorganisms to coal-tar-waste constituents in a contaminated aquifer. Waters were sampled from wells along a natural hydrologic gradient extending from uncontaminated (1 well) into contaminated (3 wells) zones. Groundwater analyses determined the concentrations of carbon and energy sources (pollutants or total organic carbon), final electron acceptors (oxygen, nitrate, sulfate), and metabolic byproducts (dissolved inorganic carbon [DIC], alkalinity, methane, ferrous iron, sulfide, Mn2+). In the contaminated zone of the study site, concentrations of methane, hydrogen, alkalinity, and DIC were enhanced, while dissolved oxygen and nitrate were depleted. Field-initiated biodegradation assays using headspace-free serum bottle microcosms filled with groundwater examined metabolism of the ambient organic contaminants (naphthalene, 2-methylnaphthalene, benzothiophene, and indene) by the native microbial communities. Unamended microcosms from the contaminated zone demonstrated the simultaneous degradation of several coal-tar-waste constituents at the in situ temperature (10°C). Lag phases prior to the onset of biodegradation indicated the prevalence of both aerobic and anaerobic conditions in situ. Electron acceptor-amended microcosms from the most contaminated well waters demonstrated only aerobic naphthalene degradation. Collectively, the geochemical and microbial evidence show that biodegradation of coal-tar-waste constituents occurs via both aerobic and anaerobic terminal electron accepting processes at this site.  相似文献   

3.
石油污染对土壤微生物群落多样性的影响   总被引:3,自引:0,他引:3  
土壤中的微生物主要有细菌、放线菌、真菌三大类群,微生物在石油污染的土壤中发挥着维持生态平衡和生物降解的功能。文中以四川省遂宁市射洪县某废弃油井周围不同程度石油污染土壤为供试土壤,首先对各组供试土壤的基本理化性质进行测定分析;然后采用平板菌落计数法测定了供试土壤中三大类微生物数量的变化,结果表明:相比未被污染的对照土壤,石油污染的土壤中细菌、放线菌、真菌数量均减少,并且土壤中可培养微生物的数量与土壤含水量呈正相关;再采用454焦磷酸测序技术对土壤中的细菌群落多样性及变化进行16S rRNA基因分析。在所有供试的4个土壤样品中,共鉴定出不少于23 982个有效读取序列和6 123种微生物,相比于未被污染的对照土壤,石油污染土壤中细菌的种类更加丰富,主要优势门类为酸杆菌门、放线菌门、拟杆菌门、绿弯菌门、浮霉菌门和变形菌门。但不同土壤样品中优势菌群的群落结构有所差异,石油污染的土壤中,酸杆菌门、放线菌门和变形菌门的数量最多,未被石油污染的土壤中,放线菌门、拟杆菌门和变形菌门的数量最多。  相似文献   

4.
A combination of geochemical, microbiological and isotopic methods were used to evaluate in-situ bioremediation of petroleum hydrocarbons at one site contaminated with refinery waste and a second site contaminated with aviation gasoline at Alameda Point, California. At each site, geochemical and microbiological characteristics from four locations in the contaminated zone were compared to those from two uncontaminated background locations. At both sites, the geochemical indicators of in-situbiodegradation includeddepleted soil gas and groundwater oxygen, elevated groundwater alkalinity, and elevated soil gas carbon dioxide and methane in the contaminated zone relative to the background. Radiocarbon content of methane and carbon dioxide measured in soil gas at both sites indicated that they were derived from hydrocarbon contaminant degradation. Direct microscopy of soil core samples using cell wall stains and activity stains, revealed elevated microbial numbers and enhanced microbial activities in contaminated areas relative to background areas, corroborating geochemical findings. While microbial plate counts and microcosm studies using soil core samples provided laboratory evidence for the presence of some microbial activity and contaminant degradation abilities, they did not correlate well with either contaminant location, geochemical, isotopic, or direct microscopy data.  相似文献   

5.
Results are summarized of several field and greenhouse experiments designed to estimate differences in the ability of some plant species to take up from soil essential nutrients and various trace elements and transfer them from roots to upper plant parts. Instrumental neutron activation analysis was used to determine concentrations of 22 elements in plant and soil samples. Correlation and principal component analysis were applied for interpreting a large volume of experimental results. In many cases there was no statistically significant positive correlation between element concentrations in soil and concentrations of these elements in plants. Moreover, relationships between elements were often different in soil and in different plant parts, thereby suggesting quite different element behaviours in soil and in plants. Our experimental results and data published in the literature revealed that macro- and trace element concentrations might serve as a specific indicator of plant taxonomy, thus allowing for differentiation of the plants in accordance with concentrations of certain elements in roots or in leaves. Short-term variations in concentrations of elements typical for different plant species and factors affecting these variations indicated that diurnal dynamics of plant element concentrations were regular and species-specific.  相似文献   

6.
Wetlands play an important role in determining the water quality of streams and are generally considered to act as a sink for many reactive species. However, retention of chemical constituents varies seasonally and is affected by hydrologic and biogeochemical processes including water source, mineral weathering, DOC and SPM cycling, redox status, precipitation/dissolution/adsorption, and seasonal events. Relatively little is known about the influence of these factors on trace element cycling in wetland-influenced streams. To explore the role of wetlands with respect to the retention/release of trace elements to streams, we examined temporal and spatial patterns of concentrations of a large suite of trace elements (via ICP-MS) and geochemical drivers in five streams and wetland rivulets draining natural wetlands in a northern Wisconsin watershed as well as in their groundwater sources (terrestrial recharge, lake recharge, and older lake recharge). We performed principal components analyses of the concentrations of elements and their geochemical drivers in both the streams and rivulets to assist in the identification of factors regulating trace element concentrations. Variation in trace and major element concentrations among the streams was strongly related to the proportion of terrestrial recharge contributing to the stream. A dominant influence of water source on rivulet chemistry was supported by association of groundwater-sourced elements (Ba, Ca, Cs, Mg, Na, Si, Sr) with the primary statistical factor. DOC appeared in the first principal component factor for the streams and in the second factor for the rivulets. Strong correlations of Al, Cd, Ce, Cu, La, Pb, Ti, and Zn with DOC supported the important influence of DOC on trace metal cycling. A number of elements in the rivulets (Al, La, Pb, Ti) and streams (Al, Ce, Cr, Cu, La, Pb, Ti, Zn) had a significant particulate cycle. Redox cycling and precipitation/dissolution reactions involving Fe and Mn likely impacted Cu and Mo as evidenced by the low levels in the rivulets. Variance in Fe, Mn and the metal oxy-anions was associated with factors related to redox cycling and adsorption reactions in the wetland sediments. In streams, DOC and metals with a high affinity for DOC were associated with a factor which also included negative loadings for groundwater-sourced elements, reflecting the importance of seasonal hydrologic events which flush DOC and metals from wetland sediments and dilute groundwater sourced metals. Redox processes were of secondary importance in the streams but of primary significance in the rivulets, documenting the importance of anoxic conditions in wetland sediments on groundwater en route to the stream.  相似文献   

7.
A series of long-term Zn-contaminated soils was sampled around a galvanized pylon. The potential nitrification rate (PNR) was unaffected by the soil total Zn concentrations up to 25 mmol Zn kg(-1) whereas spiking the uncontaminated control soil with ZnCl(2) to identical total concentrations completely eliminated nitrification. The larger sensitivity of the PNR to spiked ZnCl(2) than to the Zn added in the field was equally found when relating the PNR to the Zn concentrations in the pore water of these soils, suggesting differences in Zn tolerance of the nitrifying communities. Zinc tolerance in the long-term Zn-contaminated soil was demonstrated by showing that (i) the nitrifying community of long-term Zn-contaminated soil samples was less sensitive to Zn than that of the uncontaminated control soil when both communities were inoculated in sterile ZnCl(2)-contaminated soil samples, and, that (ii) addition of ZnCl(2) to the long-term Zn-contaminated soil samples affected nitrification less than equal additions of ZnCl(2) to uncontaminated control samples. Denaturing gradient gel electrophoresis fingerprinting of polymerase chain reaction amplified 16SrRNA gene fragments of ammonia-oxidizing bacteria showed that the community structure in uncontaminated and long-term contaminated soil samples was different and could be related to soil Zn concentrations.  相似文献   

8.
The distribution and behaviour of particulate trace elements in the atmosphere have been studied by continuous measurements for 5 years at seven non-urban sites in the United Kingdom. Samples have been taken regularly of airborne dust, rainwater and dry deposition: these have been analysed for up to 36 elements. Concentrations of trace elements vary considerably between sites but the relative concentrations are among uniform: this suggests similarity of origin or good atmospheric mixing. By comparing the relative concentrations with those in soil it is possible to differentiate between trace elements that are derived from soil and those that may be attributed to industrial activity. This classification is supported by estimates of the particle sizes in air. The deposition of trace elements can be related to the concentrations presnet in soil and to the annual removal by crops. Retrospective analyses of stored samples from one site describe the history of trace element concentrations in air since 1957. The sea surface is considered as a possible source of atmospheric trace elements.  相似文献   

9.
The contamination of inorganic elements in soil is a serious environmental problem,. The aim of the present study is to investigate concentrations of 19 elements in order to access the extent of their contaminations in the surface soil of hydroelectric catchments, Uttarakhand, India. For analysis, 168 soil samples were divided into eight groups according to altitudes. In soil samples, the concentration levels of Cr and Cu were found more than their background and threshold limit. Moreover, the evaluation of geochemical index (Igeo), enrichment factor (EF), and contamination factor (CF) suggests that soil samples were reasonably contaminated and highly enriched in Rb. The pollution load index (PLI) and degree of contamination (Cd) revealed that the presence of contaminations (PLI: 1.44; Cd: 44.94) in the study site might be a possible health risk for local residents. However, the calculation pollution ecological risk index (PERI) suggests low ecological risk (PERI: 77.61) of these elements. The clustering of sampling groups contained two clusters: the first cluster comprised F1 and F4 while the second cluster consists of the rest of the sampling group. Multivariate statistical analysis revealed that the variation in concentrations of the elements might be a result of agricultural activities and pedological processes.  相似文献   

10.
Abstract

Moss bags of the aquatic bryophyte Rhynchostegium riparioides (Hedw.) C.E.O. Jensen (=Platyhypnidium riparioides (Hedw.) Dixon) were transplanted into freshwaters of the Province of Belluno (NE Italy). This study was aimed at testing the bioaccumulation of trace elements in Pre-alpine Dolomitic streams, where this species does not grow naturally, and where analyses of water samples have never revealed trace element pollution. Mosses were collected after 13, 26 and 59 days of exposure. The concentrations of nine trace elements in the apical shoots were measured. Average concentrations reached in three control stations were adopted as background values, to calculate the contamination factor (CF). Transplants accumulated trace elements and discriminated between non- or scarcely contaminated waters (low CF) and polluted ones (high CF). Furthermore, two patterns of contamination were revealed by multivariate analysis: (I) metals (Cr, Cu, Ni) from galvanic industries, and (II) metals (Pb, Zn) from other industrial/domestic sources or mine sites.  相似文献   

11.
AIMS: The aim of this study was to detect and quantify DNA of the ochratoxinogenic fungus Aspergillus ochraceus in green coffee and to compare the results with the ochratoxin A content of naturally contaminated samples. METHODS AND RESULTS: A DNA extraction protocol based on a combination of ultrasonification and a commercial kit was tested for the recovery of fungal DNA. PCR and real-time PCR protocols were established for the detection of A. ochraceus. Sensitivity of the PCR was checked by the addition of inoculated green coffee and pure fungal DNA to uncontaminated green coffee samples. The A. ochraceus DNA content of 30 naturally contaminated green coffee samples was determined and compared with the ochratoxin A concentrations. CONCLUSIONS: Aspergillus ochraceus can be rapidly and specifically detected in green coffee by PCR. A positive correlation between the ochratoxin A content and the DNA quantity was established. Significance and Impact of the Study: This work offers a quick alternative to the conventional mycological detection and quantification of A. ochraceus in green coffee.  相似文献   

12.
13.
We have analyzed the relationship between total Zn, Pb and Cu concentrations in the soil and the capacity of three plant species to accumulate these elements in their leaves. The study was carried out in a highly contaminated area at Sulcis-Iglesiente (SW-Sardinia, Italy). We took samples of the leaves of Dittrichia viscosa, Cistus salviifolius and Euphorbia pithyusa subsp. cupanii and samples of the soil beneath each of them at depths of 0-30 and 30-60 cm, both in contaminated mine tailings and surrounding areas. Due to the anthropic origin of the soil materials the results varied considerably. Bioavailability of trace elements was mainly related to the calcium-carbonate content and the crystalline and amorphous forms of iron in the soil. The concentration of Zn in the leaves of the three plant species studied was highest, followed by Pb and finally Cu. The leaves of Dittrichia viscosa contained the highest concentrations of trace elements and this species may be considered as being a “phytoextractor” in soils where the trace-element concentrations are not too high. Euphorbia pithyusa subsp. cupanii had low trace-element concentrations in its leaves despite growing in highly contaminated soils, and so might be used as a “phytostabilizer”. Although Cistus salviifolius does not grow in the most contaminated soils, could be considered as a contamination indicator up to a given level.  相似文献   

14.
Recorded in several species including humans, geophagia or soil eating has been observed in both wild and domesticated horses and has generally been regarded as an indication of nutritional deficiency or "boredom". Studies of soils consumed by different species have led to several theories as to the identity of soil constituents that stimulate geophagia. In this study, geochemical analysis of 13 equine geophagic sites from different parts of Australia was undertaken. Significantly larger concentrations of iron and copper were found in soil samples from geophagic sites when compared to paired control samples, suggesting that these elements provide the stimulus for geophagia.  相似文献   

15.
A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition partly counteracted the positive effects of N addition on available trace element concentrations in the soil. Foliar Mn, Cu and Zn concentrations increased but Fe concentration decreased with N addition, resulting in foliar elemental imbalances among Fe and other selected trace elements. Water addition alleviated the effect of N addition. Forbs are more likely to suffer from Mn toxicity and Fe deficiency than grass species, indicating more sensitivity to changing elemental bioavailability in soil. Our results suggested that soil acidification due to N deposition may accelerate trace element cycling and lead to elemental imbalance in soil–plant systems of semi-arid grasslands and these impacts of N deposition on semi-arid grasslands were affected by water addition. These findings indicate an important role for soil trace elements in maintaining ecosystem functions associated with atmospheric N deposition and changing precipitation regimes in the future.  相似文献   

16.
The soils of the Pampas are thought to be generally non-contaminated but there is growing evidence of trace element accumulation at some specific sites. The goal of this study was to measure the current levels of the main Potentially Toxic Elements (PTE) in the top horizon and in specific soil profiles so that we would establish the baseline concentrations of these elements. Eighty-eight top soils and three soil profiles were sampled. The samples were acid digested. Arsenic, boron, barium, cadmium, cobalt, chromium, copper, lead, manganese, mercury, molybdenum, nickel, silver, selenium and zinc were determined with inductively coupled argon plasma emission spectrometry (ICPES).

All of the values found are within the normal range for uncontaminated soils as reported from several continents. Elements with high environmental risk potential are lower than the admissible range of the European Union and some of them are orders of magnitude lower than those of the United States Environmental Protection Agency (US-EPA) 501 levels. Potentially Toxic Elements contents increased with depth or showed a maximum concentration at the B2 horizon. This is related to the parent material and the pedogenetic processes but not to recent contamination. Soil profiles showed higher concentrations of PTE in clayey horizons. However, these relationships did not appear in top soil samples in any soil Great Group studied. The shown data establishes a baseline for PTE concentrations for Pampas soils.  相似文献   


17.
Necrosols are a unique category of anthropogenic soils that are associated with excavated cemeteries or graveyards. In spite of the growing number of cemeteries and burial sites found across urban and rural areas globally, scientific information regarding the contamination potential of this category of soils is relatively scarce and not properly understood. The purpose of this study is to fill this gap by assessing the contamination significance of trace metal contents in the necrosols associated with two excavated mass graves in Rwanda. For this preliminary geochemical investigation, cemetery soil samples were collected from two excavated mass graves in the Murambi memorial site, Rwanda, and analyzed for trace and major element concentrations. The enrichment factor (EF), chemical index of alteration (CIA), and contamination status of necrosol samples was determined in comparison with the offsite area. The results revealed that the average EF values for both onsite and offsite samples were generally within the class of natural background with only six onsite samples having higher EF values than the offsite or background area. Possible reasons for the progressive depletion of the selected trace element onsite are the relatively low anthropogenic activities and higher weathering intensity of the necrosols in comparison with the background area over time. Even though the mean onsite CIA values for the necrosols were slightly higher than the background area, the index further confirmed that both the necrosols and offsite samples were significantly altered to kaolinic degree. From the resulting pollution index values (PI Nemerow), it can be inferred that the Murambi necrosols were within the range of 0.84 and 1.82, corresponding to the precaution and slightly polluted domain. The current contamination status of the necrosols is likely to have been caused as a result of the anthropogenic input of Cr and Pb onsite relative to the offsite area.  相似文献   

18.
Thirty-nine soil samples were collected on a grid pattern from the north of the Jordan Valley. These samples were subjected to geochemical, mineralogical and textural analyses. The investigated soil is characterized by medium texture and to a less extent moderately coarse and coarse texture. The value of TDS shows a slight increase in the southern part of the study area toward the Dead Sea due to the increase in temperature and decrease of the amount of precipitation. The organic matter content and P 2 O 5 values show significant variations that coincide with agricultural activity and application of fertilizers and pesticides in the investigated area. In the samples collected, CEC values are slightly decreased from north to south parts of the study area where the abundance of organic matter and clay minerals are low. The study found that the enrichment factors of the measured heavy metals Pb, Cd, As and Hg are 2.8, 11.9, 20 and 17 respectively. Accordingly, the soil of the study area can be considered moderately contaminated with respect to As and Hg and uncontaminated to moderately contaminated with respect to Pb and Cd. The distribution of the measured heavy metals are affected by various geochemical factors including pH, clay content, cation exchange capacity, organic matter content and total phosphate content. Sequential extraction procedure was used in order to determine the percentage of the Pb, Cd and As present in five geochemical fractions of the examined soil samples. It was found that Pb and As are mainly associated with the residual phases and are relatively immobile. On the other hand Cd is enriched in the carbonate phase of the analyzed soil samples. Based on the sequential extraction procedure it is possible to suggest the sequence of metal mobility as: Cd > Pb > As.  相似文献   

19.
Sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) is widely distributed in aquatic ecosystems. The microbial community structure of riverbank PAH-contaminated sediments was investigated using phospholipid-derived fatty acid (PLFA) analysis. Surface and subsurface riverbank sediment was collected from a highly contaminated site and from an uncontaminated site along the Mahoning River, OH. PAH concentrations, physical sediment characteristics, and other microbial community parameters (biomass as phospholipid phosphate (PLP) and activity) were also measured. PAHs were detected in all samples but were only quantifiable in the contaminated (250?μg/g?g(-1)) subsurface sediment. Subsurface samples from both locations showed very similar PLP values and distribution of PLFAs, with 27-37?% of the microbial community structure being composed of sulfate reducing and other anaerobic bacteria. Principal components analysis indicated no correlation between PAH contamination and PLFA diversity. Although PLP and phospholipid fatty acid measurements of bacterial communities did not reflect the environmental differences among sites, the highly PAH-contaminated sediment showed the highest measured microbial activity (reduction of 1,200?nmol?INT?g(-1)?h(-1)), likely from a population adapted to environmental pollutants, rates that are much higher than measured in many uncontaminated soil and sediment systems. These data warrant further investigation into community structure at the genetic level and indicate potential for bioremediation by indigenous microbes.  相似文献   

20.
Concentrations of the elements Ca, Sr, Mg, Zn and Cu were determined in excavated hair specimens and adherent, most probably soil remains from two sites in Germany. Though soil contamination obviously has occurred, the two groups could be distinguished by differential trace element contents in the hair samples. The trace element concentrations might be interpreted in terms of nutritional intake, the results being corroborated by preceding bone analyses and the different local and social settings. Hair decomposition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号